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Y. Y U *

*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, wWoods Hole Research Center, Woods Hole,

MA, USA, zInstituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, SP, Brazil

Abstract

The amount and spatial distribution of forest biomass in the Amazon basin is a major

source of uncertainty in estimating the flux of carbon released from land-cover and land-

use change. Direct measurements of aboveground live biomass (AGLB) are limited to

small areas of forest inventory plots and site-specific allometric equations that cannot be

readily generalized for the entire basin. Furthermore, there is no spaceborne remote

sensing instrument that can measure tropical forest biomass directly. To determine the

spatial distribution of forest biomass of the Amazon basin, we report a method based on

remote sensing metrics representing various forest structural parameters and environ-

mental variables, and more than 500 plot measurements of forest biomass distributed

over the basin. A decision tree approach was used to develop the spatial distribution of

AGLB for seven distinct biomass classes of lowland old-growth forests with more than

80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous

savanna and secondary forests, was directly estimated with a regression based on

satellite data. Results show that AGLB is highest in Central Amazonia and in regions

to the east and north, including the Guyanas. Biomass is generally above 300 Mg ha�1

here except in areas of intense logging or open floodplains. In Western Amazonia, from

the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges

from 150 to 300 Mg ha�1. Most transitional and seasonal forests at the southern and

northwestern edges of the basin have biomass ranging from 100 to 200 Mg ha�1. The

AGLB distribution has a significant correlation with the length of the dry season. We

estimate that the total carbon in forest biomass of the Amazon basin, including the dead

and belowground biomass, is 86 Pg C with � 20% uncertainty.
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Introduction

The distribution of forest biomass over tropical forests is

uncertain. Current estimates for the forests of the Ama-

zon basin vary widely (Fearnside, 1996; Brown, 1997;

Houghton, 1997; Houghton et al., 2001; Eva et al., 2003;

Fearnside & Laurance, 2003), and contribute more than

any other factor to the uncertainty in estimates of

carbon flux from land-cover and land-use change

(Houghton et al., 2000; Houghton, 2005). While exten-

sive forest inventories could provide the data required

for accurate determination of the sources and sinks of

carbon from changes in land use, systematic on-the-

ground measurements of biomass over large areas, such

as the Amazon basin, are expensive and highly unlikely.

Partial inventories, such as the one carried out by

RADAMBRAZIL in the 1970s, and measurements at

individual plots, provide information on biomass in

certain forest types, but they have been insufficient for

the entire region.

Houghton et al. (2001) compared seven methods that

have been used to estimate forest biomass over the

Brazilian Amazon. The methods were based on the

RADAMBRAZIL inventory, on an interpolation of mea-

surements from 44 plots, on empirical relationships

between environmental factors and aboveground bio-

mass, on percent tree cover from satellite data, and on
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estimates of biomass modeled with satellite-derived

measurements of net primary production (NPP). Ba-

sin-wide estimates of biomass (including dead, live, and

belowground) ranged over more than a factor of two,

from 39 to 93 Pg C, with a mean value of 70 Pg C.

Average forest biomass was 177 Mg C ha�1. Data from

the RADAMBRAZIL inventory produced estimates of

total biomass that varied between 62.5 and 93.1 Pg C,

depending on the factors used to convert stem volumes

to biomass. A spatial comparison of four of the most

reasonable maps showed agreement over only 5% of the

Brazilian Amazon (essentially random agreement).

Estimates of biomass for the region suffer from two

sources of uncertainty: (1) uncertainties associated with

measurements at individual plots and (2) uncertainties

in extrapolating data from individual plots to the entire

basin. Measurements at individual plots are often in-

complete. Full accounting requires measurement of live

and dead biomass, above- and belowground biomass,

lianas, palms, small trees, and other components of

biomass (Brown & Lugo, 1992; Fearnside, 1992; Higuchi

et al., 1994; Kaufman et al., 1998). Measurements at

individual plots also suffer from other problems, such

as the possible bias of data toward low (accessible)

biomass, the possible bias of small plots toward large

biomass, and the use of different allometric equations to

calculate biomass (Brown & Lugo, 1984, 1992; Brown

et al., 1995; Fearnside, 1997; Nelson et al., 1999; Hought-

on et al., 2001; Keller et al., 2001; Saatchi et al., 2007a, b

see Chave et al., 2005 for a systematic accounting for

these uncertainties and the propagation of errors).

Systematic inventory plots using statistical sampling

protocols can reduce the errors in biomass estimation to

10–20% at the stand level (Brown & Lugo, 1992; Brown

et al., 1995; Chambers et al., 2001; Keller et al., 2001). A

recent study by Brown et al. (2000) in the Noel Kempff

National Park of Bolivia showed that a statistically

designed sampling technique (over 600 plots) reduced

errors to o10%. However, a similar sampling intensity

over the Amazon basin has not been feasible because of

the basin’s large and inaccessible regions, and the fine-

scale variation in forest structure and in species compo-

sition.

The largest uncertainty in estimating the distribution

of biomass over large regions results from the techni-

ques used in extrapolation (Houghton et al., 2001). In

the absence of large-scale inventory plots and direct

measurement of forest biomass from remote sensing

data, most efforts for quantifying the distribution of

biomass have focused on either interpolation techni-

ques aimed at providing patterns of biogeographical

variation of forest biomass (Malhi et al., 2006), or a

combination of modeling and remote sensing (Potter

et al., 2001). In this paper, we report a new method of

extrapolation over the Amazon basin. By collecting data

from a large number of biomass plots in a variety of

forest types distributed over the basin, and by using

remote sensing data sensitive to forest characteristics

and environmental variables, we develop a series of

metrics for extrapolating the plot data to the basin. The

approach combines the strengths of both forest plots

(limited in spatial coverage but providing accurate

measurement of biomass) and remote sensing data (less

accurate in measuring biomass directly but covering the

entire region). The spatial resolution is 1 km. To cover

the wide range of biomass values across the basin, we

considered all vegetation types present: old growth

terra firme forests, floodplains, woody and herbaceous

savanna, and small forest patches along the eastern

Andes and Atlantic coast. We also included the most

recent land-cover map of the region (1 km resolution) in

order to separate undisturbed vegetation from the

ecosystems modified by human activities (secondary

and degraded forests). The region of study includes all

vegetation types in South America between 141N and

201S latitude.

The paper is divided into several sections. The first

section describes the biomass plots and the remote

sensing data used in this study. The section on metho-

dology describes the approach for extrapolating the plot

data over the basin. The last section presents the bio-

mass distribution at 1 km resolution, estimates the

accuracy from cross-validation, and discusses sources

of errors and uncertainties.

Data

Biomass plots

Measurements of forest biomass across the Amazon

basin have increased in recent years. Although these

measurements do not follow a systematic inventory

protocol (they vary in plot size, sampling scheme,

allometric equations, and the number of components

measured), they have produced the largest data set on

woody biomass throughout the basin. We refer to these

measurements as biomass plots and not forest inven-

tory plots. The plots included in this study met the

following criteria: (1) almost all biomass measurements

were made after 1990, (2) all secondary forests plots

included the years since disturbance, (3) plots were

representative of larger areas. All plots, except a few

in secondary forests, were sampled within a larger

forest patch and, thus, could be integrated with the

remote sensing data, and (4) Plots were geolocated. We

located all plots on high-resolution (30 m) Landsat ETM

(Enhanced Thematic Mapper) imagery acquired in late

1990s and early 2000s and, if necessary, we modified the
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geographical locations to make sure they fell in the

described vegetation type.

All plots contained information on aboveground live

biomass (AGLB), and only occasionally included other

components of forest biomass, such as dead and below-

ground biomass, structural information, such as the

basal area and height, and average wood density.

Because the most consistent quantity provided for each

plot was AGLB, our analyses concentrated on the dis-

tribution of this quantity. However, the relationships

between AGLB and other components of total biomass

from the published literature were used to calculate

total biomass over the basin (Brown & Lugo, 1992;

Cairns et al., 1997; Delaney et al., 1997; Houghton

et al., 2001). For example, aboveground dead biomass

(AGDB) and the belowground biomass (BGB) in South

American forests averaged 9% and 21% of AGLB,

respectively (Houghton et al., 2001). Cairns et al. (1997)

also showed a direct relationship between AGLB and

BGB based on 85 studies of forest plots around the

world.

In this study, we identified and collected data from

544 biomass plots sampled in different vegetation types

throughout the basin (Fig. 1). Most of the data were not

published but were contributed to this study by indi-

vidual investigators. The data (plot size, vegetation

cover, geographical region, date, and name of the

principal investigator) are summarized in Table 1.

The biomass plots included 216 terra firme old-

growth forests, 191 secondary forests of different ages,

59 woodland savannas, 40 floodplain forests, and

more than 38 submontane and montane tropical forests

(Table 2).

Remote sensing data

We compiled a set of remote sensing data and products

from different earth observing sensors to derive metrics

sensitive to the structural attributes of vegetation, land-

scape, and environmental variables (Table 3). The data

set included both optical and microwave remote sen-

sing sensors. Optical data were derived from 4 years of

MODIS 32-day composite products. Images of the nor-

malized difference vegetation index (NDVI) at 1 km

resolution were from Huete et al. (2002), and leaf area

index (LAI) data were from Myneni et al. (2002). We

processed the data sets to create, first, a 1-year monthly

maximum NDVI composite and average LAI images.

This step improved the quality of the data by filtering

out cloud cover and reducing noise in the LAI data.

Then, we computed four metrics of LAI and NDVI from

these data: maximum, annual mean, mean of four driest

Fig. 1 Location of forest plots in the Amazon basin. Each location on the map represents several plots. Location 25 represents biomass

plots scattered across the basin.
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months (July, August, September, and October), and

mean of four wettest months (December, January, Feb-

ruary, and April). These data sets provided measures of

vegetation greenness, seasonality (deciduousness), leaf

properties, and heterogeneities. We also included

MODIS-derived percentage tree cover data, available

from the Global Land Cover Facility at the University of

Maryland, as an indicator of tree cover and a possible

surrogate for the spatial distribution of biomass (Han-

sen et al., 2002).

Microwave data from spaceborne radar instruments

were used as a surrogate for forest structure and

biomass. JERS-1 (Japanese Earth Resource Satellite)

backscatter image mosaics for dry and wet seasons at

100 m resolution were aggregated to 1 km to produce

mean backscatter and a coefficient of variation (texture)

(ratio of standard deviation to mean backscatter for 100

pixels). Backscatter and texture at L-band (1.25 GHz)

from this instrument are sensitive to forest structure

and biomass at low densities of tree cover, such as open

forests and woodland savannas (Saatchi et al., 1997,

2000; Luckman et al., 1998; Podest & Saatchi, 2002).

Texture also provides information on vegetation rough-

ness and crown size distribution, again, related to

variations in biomass.

As part of the microwave remote sensing measure-

ments, we included global NASA (National Aeronau-

tics and Space Administration) Quick Scatterometer

(QSCAT) data available in 3-day composites at

2.25 km resolution (Long et al., 2001). The 3-day data

Table 2 Distribution of number of plots and biomass ranges for general vegetation types across the Amazon basin

Vegetation type Number of plots

Average

AGLB tons ha�1

Standard deviation

AGLB tons ha�1

Old growth terra firme forest 216 254.8 103.2

Floodplain inundated forest 40 161.3 101.7

Secondary forest 191 52.9 47.5

Woodland savanna 59 20.1 30.2

Grass/shrub savanna 38 4.4 1.9

AGLB, aboveground live biomass.

Table 3 List of remote sensing data and metrics from MODIS LAI (Myneni et al., 2002), MODIS NDVI (http://glcf.umiacs.umd.

edu/data/modis/), MODIS derived percentage tree cover (http://glcf.umiacs.umd.edu/data/modis/), QSCAT scatterometer

(Long et al., 2001), JERS-1 radar (Saatchi et al., 2000), and SRTM data (http://www2.jpl.nasa.gov/srtm/)

Data record

Remote sensing

sensor

Vegetation/landscape

parameter

RS metrics at 1 km

resolution

Monthly NDVI 2000–2004 MODIS Vegetation type and seasonality NDVI-1: maximum NDVI

NDVI-2: annual mean NDVI

NDVI-3: mean NDVI dry months

NDVI-4: mean NDVI wet months

Monthly (2000–2004)

leaf area index (LAI)

MODIS Vegetation type, seasonality,

productivity

LAI-1: maximum LAI

LAI-2: annual mean LAI

LAI-3: mean LAI wet months

LAI-4: mean LAI dry months

Percent tree cover MODIS Forest cover, heterogeneity VCF: continuous field product

Scatterometer backscatter

Monthly composites at 1 km

1999–2004

QuikSCAT Vegetation moisture

leaf/wood density

QSCAT-H: mean backscatter HH

QSCAT-V: mean backscatter VV

QSCAT-SH: Std backscatter HH

QSCAT-SV: Std backscatter VV

Radar backscatter at 100 m

resolution (1995–1996)

JERS-1 Biomass, structural heterogeneity,

cover type

JERS-DRY: dry season backscatter

JERS-WET: wet season backscatter

JERS-DT: dry season CV texture

JERS-WT: wet season CV texture

Digital elevation (100 m

resolution) 2000

SRTM Surface elevation SRTM-HGT: Mean Elevation

SRTM-STD: ruggedness factor

NDVI, normalized difference vegetation index; SRTM, Shuttle Radar Topography Mission.
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over 4 years (2000–2004) were used to create average

monthly composites at 1 km resolution and then further

processed to produce four metrics that included annual

mean and standard deviation of radar backscatter at

both HH and VV polarizations (H, horizontal; and V,

vertical). QSCAT radar measurements are at KU band

(12 GHz) and are sensitive to surface roughness, moist-

ure, leaf water content, and other seasonal attributes,

such as deciduousness of vegetation. For vegetation

types of low-density biomass, such as woodland and

herbaceous savanna, measurements at different polar-

izations correlate positively with the aboveground bio-

mass (Long et al., 2001). For areas with dense forest, the

sensitivity of backscatter measurements to forest cano-

py roughness can help distinguish differences in bio-

mass.

Finally, we included the Shuttle Radar Topography

Mission (SRTM) digital elevation data, aggregated from

100 m resolution to 1 km. In addition to the mean

elevation, the standard deviation elevation about this

mean was included as an indicator of surface rugged-

ness or vegetation roughness. Overall, 19 remote

sensing image layers representing vegetation and land-

scape features were included in this analysis

(Table 3).

Climate data

A series of climate metrics was chosen to examine the

relationship between biomass distribution and climate

variables over the Amazon basin. The climate data were

compiled from a number of data bases and are available

from the WorldClim website (http://biogeo.berkeley.e-

du/) (Hijmans et al., 2004). These bioclimatic variables

included 11 temperatures and eight precipitation me-

trics at 1 km spatial resolution (Table 4). The databases

used to produce these climate metrics were obtained

from the Global Historical Climatology Network

(GHCN), the United Nations Food and Agricultural

Organization (FAO), the world Meteorological Organi-

zation (WMO), and the International Center for Tropical

Agriculture (CIAT), R-HYdronet, and additional coun-

try-based stations. The station data were interpolated to

climate surfaces by using three independent variables

(latitude, longitude, and elevation) and the thin plate

smoothing spline technique (ANUSPLIN, Hutchinson,

1999). Elevation (from SRTM data) was incorporated to

reduce statistical error (Hutchinson, 1999).

To these climate surfaces, we added two additional

layers: the number of months rainfall was o100 mm

and the number of months it exceeded 300 mm. These

precipitation metrics indicate the length of the dry

season and the seasonality of precipitation (Malhi &

Wright, 2004).

Vegetation map

To improve the extrapolation of the biomass plots over

the basin, we used a vegetation map recently produced

from a fusion of remote sensing data (Saatchi et al.,

2005a). Vegetation cover was divided into 16 types

based on structure (tree density), phenology, and sur-

face inundation conditions. The cover types were lar-

gely based on the vegetation classification of the

RADAMBRASIL project, but included cover types

found outside the Brazilian Amazon (Prance, 1979,

1989; Pires & Prance, 1985; Veloso et al., 1991; IBGE,

1997). The cover types included: terra firme forest [(1)

dense closed forest, (2) open forest, (3) bamboo domi-

nated forest, (4) liana or dry forest, (5) seasonal forest],

savanna vegetation [(6) dense woodland, (7) open

woodland, (8) park or shrubland savanna, (9) Grass-

land], wetlands [(10) closed forest, (11) open forest, (12)

herbaceous, (13) mangrove, (14) open water], and

anthropogenic vegetation [(15) secondary forest and

plantation, (16) deforested cover types, including pas-

Table 4 Description of long term averaged climate surfaces

(Hijmans et al., 2004)

Bioclimate

layer

Layer description

and unit

BIO1 Annual mean temperature

BIO2 Mean diurnal range [mean of

monthly (max temp–min temp)]

BIO3 Isothermality (P2/P7) (�100)

BIO4 Temperature seasonality (standard

deviation�100)

BIO5 Max Temperature of warmest

month

BIO6 Min temperature of coldest month

BIO7 Temperature annual range (P5–P6)

BIO8 Mean temperature of wettest

quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest

quarter

BIO11 Mean temperature of coldest

quarter

BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient

of variation)

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

Rain1 Number of months o100 mm

Rain2 Number of months >300 mm
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ture, crops, and bare areas]. The vegetation map has

two advantages over other global or regional land cover

maps: (1) it separates old growth forests into a number

of vegetation types based on seasonality or dominance

of species and (2) it separates anthropogenic cover types

by using higher-resolution remote sensing data. The

classification was verified with existing regional and

national maps over the region. We used the map in this

analysis to separate forest from nonforest types, to

locate the biomass plots associated with a vegetation

type (Fig. 2), and to allocate AGLB to land-cover types

in the Amazon basin.

Methods

Our overall approach was to determine relationships

between remote sensing metrics and AGLB from forest

plots, and use these relationships directly to estimate

AGLB over the entire Amazon basin. We tested several

techniques, such as multivariate regression analysis and

a maximum-likelihood estimator (MLE). Both methods

performed poorly when tested against the plot data

(R2o0.3) because of high spatial variability of biomass

at local scale and, thus, weak correlations between

remote sensing metrics and biomass values. For this

reason, we adopted a biomass classification approach to

segment the image into different ranges of AGLB. Our

methodology can be summarized in three steps: (1)

classification, (2) accuracy assessment, and (3) correla-

tion with environmental variables.

Classification

For biomass classification, we used the decision tree

method (DTM) described in Simard et al. (2000). The

method is based on the algorithm of Breiman et al.

(1984), in which a hierarchical set of rules derived from

a training data set are developed to split the input data

layers into clusters associated with the class definition.

DTM has been successfully applied to remote sensing

data in the past because of its simplicity, efficiency, and

robustness (Hansen et al., 2000; Saatchi et al., 2000,

2005a, 1998; Simard et al., 2000, 2001). It is simple

because, once the rules are determined the classification

can be readily performed by using a simple program. Its

efficiency is primarily due to the fact that, unlike tradi-

tional approaches (e.g. MLE), it uses only input data

layers to define the classes. Finally, the methodology is

robust because it does not assume any a priori statistical

characteristics for the input data layers and, therefore,

Fig. 2 Vegetation map of the Amazon basin, at 1 km spatial resolution, derived from remote sensing data (Saatchi et al., 2004). The map

divides the basin into 16 land cover types and open water bodies.
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can be applied with remote sensing data from different

sensors. Moreover, the decision tree rules are explicit

and allow for the identification of data layers relevant

for particular class types.

We performed the classification of the AGLB in two

steps. (1) We used the DTM approach to classify the

AGLB of forests with biomass values above 150 Mg ha�1

into classes of 50 Mg ha�1 increments. (2) For forests

with biomass values o150 Mg ha�1, we developed di-

rect regression equations from the field plots and the

remote sensing data to define biomass classes of mostly

25 Mg ha�1 increments. The following sections summar-

ize the methods at each step.

Forest biomass 4150 Mg ha�1. By concentrating on old

growth terra firme and floodplain varzea forest types,

we developed a training data set of 256 biomass plots

(216 terra firme and 40 inundated) that included a wide

range of AGLB values, the majority of which were

>150 Mg ha�1. The following steps summarize the

overall procedure for biomass classification.

1. Using each plot’s geographic coordinates, we identi-

fied the land-cover types of 256 biomass plots on the

1 km resolution vegetation map of the Amazon basin.

All biomass plots were identified as belonging to

either dense, open (degraded), bamboo or decid-

uous, dry, and floodplain or swamp forests in the

classification map. If more than one plot was located

on the same 1 km pixel, we used the average AGLB

to represent the pixel value. These colocated plots

reduced the effective number of plots from 256 to

228. The plot locations were used to create a training

data set for the 19 remote sensing data layers (Table

3). We divided the training plots into seven biomass

classes with 50 Mg ha�1 increments (i.e. 0–150, 150–

200, 200–250, 250–300, 300–350, 350–400, 4400.).

Each class had 10–30 forest plots. For those plots that

were in the middle of large contiguous forest stands

and had similar landscape features (no change in

elevation and land cover type), the training data

were extracted from 3� 3 pixels around the plot

location. This approach increased the training data

set to 50–100 pixels for each biomass class and

allowed the development of input statistics for the

DTM classifier.

2. The vegetation map was used to create a mask

identifying classes of old growth and inundated

forests. The mask included the dense and open terra

firme forests, bamboo and liana dominated forests,

seasonal, and dense and open floodplain forest cover

types.

3. The DTM classifier was used to generate a biomass

map with seven classes over areas masked by the

vegetation map. The structure of the decision tree is

determined by optimizing a cost function iteratively

to assign a final node to each biomass class (Simard

et al., 2000). The optimization works in a global sense;

it optimizes the cost function for the entire group of

classes rather than individual classes. This process is

performed by selecting a random sample of the

training data to develop the decision tree rules and

to assess the performance of the rules by predicting

the biomass classes for the rest of the training pixels

as an independent test data. This procedure is re-

peated until the highest accuracy for the indepen-

dent test data is achieved. The optimized decision

tree uses the most relevant data layers, and the least

number of splits to obtain the classes of biomass

(Simard et al., 2000). We applied the decision rules

from the DTM classifier to the input data layers over

the region masked by the vegetation map and there-

by generated a map with seven biomass classes.

Forest biomass o150 Mg ha�1. To complete the mapping

of biomass distribution over the Amazon basin, we

included areas of woody savanna and park savanna,

disturbed or secondary forests, and tree plantations.

The extent and the biomass of secondary forests

depend on recent rates of deforestation and land-use

change. Most areas of secondary forest are small

compared with the resolution of the images used in

this study. However, pixels with a mixture of secondary,

old growth and nonforested land were identified as

anthropogenic or open forests in the vegetation map.

Similarly, the woodland savanna pixels were mixtures

of forest and nonforested areas. We combined these

pixels from the vegetation map with the areas of the

lowest biomass class (0–150 Mg ha�1) to create a second

vegetation mask for low biomass forests.

The estimation algorithm was developed first by

extracting spectral information from the remote

sensing data layers for pixels representing the forest

plots with 0–150 Mg ha�1 of AGLB. Similar to the old

growth forest case, we combined those plots that were

located on the same 1 km pixel and used an average

biomass to represent the pixel. After combining the

pixels, we were able to create a spreadsheet of

spectral information and biomass for 214 plots that

included 100 secondary forests, 58 woodlands and

nonforest savannas, and four mixed open forest and

herbaceous swamps. The spectral data were extracted

either from an individual pixel or from 3� 3 pixels

around the plot location wherever the biomass plot

was in the middle of a contiguous large stand. We
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developed an optimum multivariate regression model

using a bootstrapping approach by randomly selecting

half of the training data for model development and

half for testing the model. The optimum model was

found for the best correlation and the least error. The

model was then applied to the input data layers over

areas masked by the vegetation map and the resulting

biomass values were classified into five classes with

25 Mg ha�1 increments (0–25, 25–50, 50–75, 75–100, 100–

150 Mg ha�1).

Accuracy assessment

Maps created from remote sensing data have at least

three sources of error: (1) from the imposition of dis-

crete classes on natural continua, (2) from the overlap of

spectral characteristics of different classes, and (3) from

inconsistencies between vegetation characteristics and

resolution of the map. Testing and understanding the

sources of errors in the biomass map are crucial in

defining its applications. We used two standard ap-

proaches to assess the accuracy of the AGLB map:

1. Classification Accuracy: By classification accuracy,

we refer to the probability that a randomly selected

location is classified correctly on the map. Because

the classification and estimation of AGLB were fully

automated, we were able to embed a combination of

bootstrapping and holdout procedures in the meth-

odology to automatically estimate the expected ac-

curacy of classification (or error of misclassification).

In the holdout approach, we randomly split the

training data sets into training and test subsamples.

The training subsample was used to develop the

decision rule or the estimation regression model,

and the test subsample was used to evaluate the

classification accuracy (Congalton, 1991; Steele et al.,

1998). Assuming the training data represented the

probability of biomass distribution over the basin (no

a priori standard probability sampling technique was

designed for biomass plots), the accuracy assessed

from the holdout approach provides a nearly un-

biased estimate of the prediction accuracy of the

classification. In the bootstrap method, the holdout

approach is repeated many times, by replacing the

training and test data with a new random split. The

individual accuracy of each classification simulation

is then combined with the others to produce the

expected prediction accuracy for AGLB classes

(Crawford, 1989; Stehman & Czaplewski, 1998).

2. Spatial Accuracy: The above estimates of classifica-

tion accuracy provide useful information about class-

specific accuracy, yet there may be substantial spatial

variation in accuracy across the biomass map that is

not accounted for in these estimates. The spatial

accuracy of the map provides the probability that

any pixel or region on the map is classified correctly.

Without a reference map or postclassification prob-

ability sampling data, spatial accuracy cannot be

computed rigorously. Interpolation techniques, such

as krigging of class accuracy over the entire map

(Steele et al., 1998) and krigging with postclassifica-

tion sampling (Kyriakidis & Dungen, 2001), are

among common methods for assessing the spatial

accuracy. However, these methods are time consum-

ing and do not necessary provide reasonable assess-

ment of accuracy in sample-deficient areas. For this

analysis, we applied the bootstrap aggregation or

‘bagging’ method, commonly used to estimate the

spatial accuracy of maps in the absence of test

samples or reference maps (Brieman, 1996; Steele

et al., 2003). By combining the DTM and the regres-

sion model, we produced one classifier from each

bootstrap sampling of training data (drawn ran-

domly with replacement) and hence one biomass

map from each classifier. By repeating the bootstrap

classifications many times, the probability of class

membership for each pixel can be estimated as the

percentage of times that pixel was classified as the

optimum class. The spatial accuracy of classification

is, therefore, the joint probability of the class mem-

bership for each pixel and the probability of the

optimum class. We obtained estimates of probability

with a Monte Carlo approximation. Note that the

resulting spatial accuracy map is not an absolute

assessment of biomass accuracy across basin, but a

relative measure of uncertainty of the methodology

across the basin.

Correlation with climate

Environmental variables such as topography, geomor-

phology, soil types, solar radiation, wind, temperature,

and rainfall are important factors affecting the forma-

tion of the tropical forests, their diversity, structure,

density, and productivity. To quantify the relationship

between biomass and average bioclimatic variations

over the Amazon basin, we intersected the AGLB map

with the BIOCLIM variables interpolated with the

digital elevation model from the SRTM data at 1km

grid cells. For each AGLB class, we calculated

the average and standard deviation of the climate

variables and analyzed the relationship for each climate

variable separately. To improve the correlations

with climate variables, we increased the number of

points in correlation analysis by limiting the analysis

to only few biomass ranges and regrouping the biomass
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classes into four levels (0–100, 100–200, 200–300,

and 4300).

Results

Forest biomass 4150 Mg ha�1

Application of the DTM to classify the AGLB of forests

with biomass greater 150 Mg ha�1 resulted in the map

shown in Fig. 3. Out of the 19 remote sensing data layers

only 16 contributed to optimizing the decision rules.

These layers, and the associated binary decisions are

explicitly shown in Fig. 4. The DTM originally pro-

duced 30 nodes from the classification with 16 data

layers. Each node was associated with one of the seven

biomass classes and was used to choose the pixel class

in the biomass map. However, among these nodes, only

14 were accurate enough to determine classes. These

nodes were related to only 13 remote sensing layers.

The rest were considered weak nodes with low accu-

racy in classification of pixels and were eliminated from

Fig. 4. In the final map, the pixels associated with these

weak nodes were corrected by applying a filter that

renamed the class based on the probability of classes

within a 3� 3 box centered around the pixel with the

low accuracy.

The interpretation of the decision tree rules for choos-

ing biomass classes is difficult because of the large

number of data layers and the multiple tree branches

defining each biomass class. However, several branch-

ing rules could be considered significant in the overall

classification. SRTM elevation and the ruggedness fac-

tor (standard deviation of elevation) were among the

first data layers to define classes. The majority of pixels

with biomass classes 4, 5, 6, and 7, referring to values

above 250 Mg ha�1, were located in areas below 190 m

elevation and with a ruggedness of o6 m in the central

Amazon. These regions had the highest probability of

colocating with the geomorphological features of dense

river systems. The second series of data layers impor-

tant in decision rules was the QSCAT horizontal and

vertical polarizations and their temporal standard de-

viations. These layers were sensitive to canopy rough-

ness and moisture condition. Higher canopy roughness

and moisture were, in general, associated with higher

biomass values, whereas smoother canopies and lower

moisture content were associated with lower biomass

values. From the four NDVI metrics, the average annual

NDVI was never used in the classification. The max-

imum and dry season NDVI metrics were primarily

associated with high biomass classes (3, 4, and 5) and

the wet season NDVI, with the low biomass classes (1

and 2). Among the LAI metrics, only the dry season

layer was used in the final branches of the decision tree.

It is possible that the dry season LAI was associated

with regions of high water availability and increased

leaf production during the dry season the reduced

cloud cover and increased solar radiation (van Schaik

et al., 1993; Wright, 1996). The dry season radar back-

scatter and texture were also important in separating

Fig. 3 Aboveground live biomass (AGLB) class map of terra firme old growth forests derived from the decision rule classifier and

multiple layers of remote sensing data.
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biomass classes 3 and 4 but not for distinguishing

among high biomass values.

The accuracy of the biomass classification was as-

sessed from the combination of bootstrapping and

holdout approach embedded in the DTM. The overall

accuracy of classes produced from the optimum deci-

sion tree was 81% (Fig. 5), which is reasonably high

given the range of AGLB chosen for the classification.

The bootstrapping simulation with the holdout ap-

proach was performed 25 times to estimate the mean

accuracy for each biomass class. The largest errors were

for high biomass classes 6 and 7 with 73% and 58%

accuracy, respectively. Given the limited sensitivity of

the input data to high biomass values, such results were

expected. The low and medium biomass classes had the

largest number of points and the highest accuracy. We

found for classes 1–5 mean prediction accuracies of

85%, 83%, 84%, 87%, and 76%, respectively. These

values are considered unbiased estimates of classifica-

tion accuracy. In other words, given the biomass plots

and remote sensing data, the DTM performed opti-

mally. Some of the obvious sources of errors in the

classification of high biomass values were the limited

number of biomass plots and the sensitivity of remote

sensing data.

The results show several interesting features of AGLB

distribution in the basin:

1. The areas in the northeastern Amazonian region,

including the Brazilian coast and the Guyanas, were

estimated to have high biomass (300–400 Mg ha�1).

The region includes relatively intact forests because

of its low human population, low agricultural po-

tential (infertile and highly weathered forest soils),

Fig. 4 Optimized decision tree rules used in the classification of the dense forest biomass map. The name of remote sensing data layers

are at shown at the top of branches with their binary rules. The final nodes derived from the rules are shown at the end of each branch,

with the red nodes representing the weak rules that will be finally removed by using a majority filter around the pixels associated with

the weak rules.
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Fig. 5 Validation of biomass classification map performed in-

ternally by the decision tree method classifier using the sub-

sample of the training pixels. The number of pixels correctly

classified created an overall R2 5 0.81.
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low commercial timber volume, and inaccessibility.

The climate is hot and wet and strongly influenced

by the northeastern trade winds from the ocean and

the intertropical convergence zone. The forest struc-

ture is multitiered with height reaching 40 m and

emergent trees up to 50 m. Despite patches of savan-

nas and low-density marsh forests around the rivers,

the lowland forest in this region is expected to have

high biomass values (Lindeman & Mori, 1989).

2. The central areas from west of Trombetas river to the

west of Rio Negro, the region containing the main

geomorphological features of the Amazon basin,

with high rainfall, and elevation o100 m, were also

classified as high biomass. The forests in this region

are on well-drained clay or loam soil with no short-

age of water. They are high in diversity, with 150–300

tree species in a single hectare and more than 500 tree

species. The canopy structure is irregular, with

heights ranging from 25 to 45 m, taller emergent trees

and many palms. According to the biomass map,

AGLB in this region ranges from 300 to 400 Mg ha�1

with occasional low stature forests (biomass

o300 Mg ha�1) on sandy soil. The main channel of

the Amazon River, all major tributaries, and a large

extent of varzea and igapo floodplains (biomass as

high 250–300 Mg ha�1) are also in this region. Along

the Amazon River, the high biomass forests extend to

the eastern regions of the state of Para and the

Marajo Island.

3. The Western region of the Amazon basin covering a

large area of the lowlands of Peru, Ecuador, Colom-

bia, and Bolivia has biomass ranging from 200 to

300 Mg ha�1. This region extends to the submontane

and transitional forests near the Andean mountains

and is covered by forests with open canopy, a low

density of large trees, mixed with semideciduous,

deciduous, bamboo, and liana trees. Data from per-

manent plots in this region suggest the forests are

more dynamic, have a higher productivity than their

counterparts in the central and eastern Amazon, and

have a higher number of smaller and medium sized

trees (Fearnside, 1997; Baker et al., 2004; Malhi et al.,

2004).

Forest biomass o150 Mg ha�1

Spectral data for forest biomass plots with

o150 Mg ha�1 AGLB were extracted from all 19 remote

sensing data layers. We found six spectral data

that showed the highest correlation with the field

plots (Fig. 6).

The best correlations, as expected, were based on

radar backscatter measurements. In the case of JERS-1

data, the backscatter was measured at L-band (25 cm

wavelength) and at 381 from nadir where the radar

signal has the potential of penetrating through the

forest canopy and scattering from stems. As shown in

Fig. 6a, the sensitivity to biomass declines at values

above 80 Mg ha�1 (1.9 in log scale) and almost saturates

between 100 and 150 Mg ha�1 (2.17 in log scale). Similar

results have been reported in the literature for other

tropical forests (Rignot et al., 1997; Saatchi et al., 1997;

Luckman et al., 1998).

A second significant relation was found for the an-

nual mean of the QSCAT scatterometer measurements

at both horizontal and Vertical polarizations. The

QSCAT radar backscatter was measured at KU Band

(2 cm wavelength) at incident angles of 461 and 541 for

the H and V polarizations, respectively. At these angles,

the short wavelength radar returns are highly sensitive

to forest crown structure, roughness, leaf density, and

moisture. According to Fig. 6b, these parameters are

good surrogates for aboveground biomass in sparse

woodlands and low-density forests (up to 50 Mg ha�1

biomass). Similar results with the spaceborne scatte-

rometer data have been observed over savanna wood-

lands (Long & Hardin, 1994). Often, seasonal changes

due to the deciduousness of trees or moist surface

conditions may affect the scatterometer data, but these

effects were not present in the annual mean backscatter

data used in this study.

MODIS data, including NDVI metrics, LAI metrics,

and percent tree cover, all showed reasonable correla-

tions with the ground data. However, the best correla-

tions with the AGLB were found for the mean NDVI of

the dry season (R2 5 0.43), the percent tree cover de-

rived from the continuous field approach (DeFries et al.,

2000) (R2 5 0.56), and the LAI of dry season (R2 5 0.66).

The low correlation with NDVI may be related to its

high sensitivity to leaf greenness, density, and season-

ality. The mean NDVI for the dry season carries more

information about the woody vegetation, as the grass-

lands and dry herbaceous understory are mostly absent

during this season.

Using these six measurements (JERS-1, QSCAT H and

V, dry season NDVI, percent tree cover, and dry season

LAI), we developed a linear regression equation for the

logarithm of AGLB in the following form:

logðAGLBÞ ¼2:99þ 0:18LHHþ 0:0467QHþ 0:218QVþ
0:0028LAIþ 0:00059NDVIþ 0:0133VCF;

ð1Þ

where LHH is the JERS-1 radar backscatter in dB

(decibels), QH and QV, respectively, represent the

QSCAT H and V polarized backscatters in dB, and
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828 S . S . S A A T C H I et al.

r 2007 The Authors
Journal compilation r 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 816–837



VCF is the fraction of tree cover (ranging between 1 and

100). NDVI and LAI are both dry season metrics, and

their values in the equation range between 0 and 1 for

NDVI and between 0 and 8 for LAI. Equation (1) was

developed by using an optimum set of coefficients

derived from bootstrapping and holdout sampling of

the training data. As discussed in Methods, for every

bootstrap random sample, a linear regression model

was developed and tested over the rest of the training

data. Through several iterations (25) the coefficients

were estimated using the best correlation and root mean

square error (RMSE). This process helped select the

optimum equation and guaranteed an unbiased accu-

racy assessment. The comparison of measured and

estimated values for the optimum regression model

produced R2 5 0.91 and RMSE 5 9.32 (Fig. 7). By parti-

tioning the estimated biomass values into biomass

classes with finer increments, the results can be repre-

sented as a map.

The overall AGLB map, combining forests with bio-

mass o and 4150 Mg ha�1, is shown in Fig. 8a. The

spatial distribution of biomass shows that the entire

area of herbaceous cover, park savanna, caatinga, and

parts of open woodlands fall in the first biomass class

(0–25 Mg ha�1). This area includes savanna regions of

the eastern and southern Amazon basin extending to

the Atlantic Ocean, the savannas of Roraima in northern

Brasil, the La Gran Sabana of southern Venezuela, and

the areas along the Andes extending to the northwes-

tern region of Venezuela. The majority of woodland

savanna, secondary forests and regions of mixed pas-

ture and forests fall in the second and third categories

(25–50 and 50–75 Mg ha�1). The map also divides the 0–

150 Mg ha�1 class of high-density forests into subcate-

gories with the majority of pixels in the 100–

150 Mg ha�1 class. The combined map includes regions

outside of the Amazon basin and provides reasonable

biomass values, but we cannot verify these results.

Spatial accuracy

The boostrapping aggregation or bagging approach was

used to generate 25 biomass maps from combined the

DTM and regression models. The spatial accuracy was

computed for each pixel by multiplying the probability

of the pixel being the optimum class by the classifica-

tion accuracy of that class. We assumed that 25 itera-

tions approached the Monte Carlo approximation of the

bootstrap variance (Steele et al., 2003). However, de-

pending on the quality and calibration of remote sen-

sing variables at a particular pixel, 25 iterations may not

be adequate to estimate the true variance. To reduce the

effect of noisy or outlier pixels resulting from the

classification and the estimation approach, we aggre-

gated a map to 5 km resolution (Fig. 8b). Two general

features are apparent: (1) accuracy varies with biomass.

Areas with o150 Mg ha�1 biomass usually have more

than 80% accuracy in biomass, although the accuracy is

less in some areas of old secondary forests and dense

woodlands, where biomass ranges from 100 to

150 Mg ha�1, (2) the spatial accuracy varies within each

biomass class depending on the type of vegetation or

the characteristics of the remote sensing data. For

example, within one biomass class, areas with higher

elevation and ruggedness had relatively less accuracy

than areas with flat topography. Furthermore, biomass

classes in areas with high seasonal variations tend to

have less accuracy than they do in areas with more

stable seasonality. For example, areas dominated by

bamboo forests in the southwestern Amazon, where

there are seasonal variations in leaf and vegetation

cover, the accuracy drops to 60%–75%.

The spatial accuracy map provides an estimate of

regional uncertainty in forest biomass. It identifies

where future measurements might contribute most to

reducing residual uncertainties.

Discussion

The distribution of AGLB in distinct classes and the

associated spatial accuracy enable us to examine the

factors responsible for the magnitude and distribution

of carbon stocks in the Amazon basin. We discuss three

aspects of our results: (1) the relation between biomass

and vegetation types, (2) comparison of the total stock
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Fig. 7 Validation of biomass estimation of low density forests

and savanna vegetation using the regression model derived from

of combined remote sensing data (R2 5 0.91, P-value o0.0001).
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of carbon obtained in this study with published results,

and (3) the correlation of environmental variables with

the patterns of AGLB.

Biomass of vegetation types

To quantify the relationship of AGLB to vegetation

types of the Amazon, we intersected the vegetation

map (Saatchi et al., 2005a) with the biomass map, and

for each vegetation type we estimated the percentage of

area covered by each biomass category (Table 5). The

five classes of vegetation within the old growth terra

firme forests (dense, open, bamboo, liana, and seasonal

forests) occupy approximately 62% of the legal Amazon

basin and represent the undisturbed or selectively

logged forests. For each vegetation class, the biomass

ranges between 150 and 350 Mg ha�1. The results show

that Amazonian forest biomass is extremely variable

and not well correlated with vegetation type. Nor

surprisingly, the techniques successful in distinguishing

vegetation types need not be the ones successful for

distinguishing biomass classes, and vice versa. The mean

and the 95% confidence interval of estimated biomass

for old growth forests are shown in Table 6. Vegetation

types and biomass classes are to a large extent inde-

pendent, and extrapolation approaches that assign ve-

Fig. 8 Aboveground live biomass classification and the spatial accuracy assessment: (a) biomass map of the Amazon basin at 1 km

spatial resolution derived from combined decision tree method and regression analysis with 11 biomass classes and overall accuracy of

88% and (b) the spatial accuracy derived from the Monte Carlo approximation of bootstrap aggregation at 5 km resolution showing the

regional variations in accuracy of biomass classification.
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getation types an average biomass value are unlikely to

capture this variability. The spatial variation of the

biomass is important. It is required for computing

accurate estimates of carbon flux associated with defor-

estation and disturbance. Average values of forest bio-

mass for regions or vegetation types may be quite

different from the biomass values of the forests actually

deforested.

The area of AGLB >350 Mg ha�1 is very small (4.5% of

the area of the terra firme class). The inundated forests,

including the closed and open floodplain forests and

the estuary and coastal mangroves, occupy almost 4%

of the basin and have lower biomass than terra firme

types. The secondary forest class is approximately 1.7%

of the basin and is primarily classified in the lower

biomass range of 0–50 Mg ha�1. The accuracy of this

result cannot be independently verified from published

data. However, this result is similar to estimates for the

Brazilian Amazon (Alves et al., 1997) and implies that

secondary forests are a small portion of the total bio-

mass of the basin. Woodlands, on the other hand play a

major role in total biomass distribution within the basin

because they cover 24% of the basin and their biomass is

50–150 Mg ha�1.

Total Amazon biomass compared with previous estimates

To estimate the total biomass of the Amazon basin and

compare the results with other studies, we used pub-

lished ratios of AGDB and BGB to AGLB derived from

forest plots (Houghton et al., 2001). AGDB averaged 9%

of the AGLB (range: 2–17%), and BGB averaged 21% of

AGLB (range: 13–26%). We used the average ratios for

all vegetation types of the basin and calculated the

range of total biomass and its components for terra

firme and floodplain forests in terms of carbon and the

mean total biomass weighted by area. We ignored other

forest types because of lack of data on the ratios for BGB

and AGDB. To quantify a range of estimates, we used

minimum, maximum, and the mid biomass values for

each biomass class. To find the extreme ranges of the

total biomass and carbon stock, we used the minimum

and maximum ratios of BGB and AGDB with the

minimum and maximum range of the AGLB. The

results are shown in Fig. 9. The uncertainties in quanti-

fying total biomass (TB) or the total carbon stock in the

Amazon basin are mainly due to uncertainties in med-

ium to high-range biomass classes. These class types are

spatially extensive and, when used with the wide range

Table 5 Area of the biomass classes within each general vegetation category of the Amazon basin

Biomass

range Mg ha�1

Old growth

terra firme

(62.3%) (%)

Floodplain/inundated

forest (4.19%) (%)

Secondary forest

(1.67%) (%)

Woodland

savanna (24.47%)

(%)

Grass/shrub

savanna (4.79%)

(%)

0–25 0 5.30 21.76 48.23 82.93

25–50 0 5.44 71.69 21.26 12.06

50–75 1.19 1.89 5.12 7.03 3.77

75–100 0.77 1.38 1.18 2.86 1.23

100–150 11.41 7.86 0.23 16.45 0

150–200 21.67 16.49 0 2.37 0

200–250 18.37 31.79 0 0.45 0

250–300 23.72 29.82 0 1.16 0

300–350 18.80 0 0 0.1 0

350–400 3.96 0 0 0 0

4400 0.66 0 0 0 0

The percent area of each vegetation type is with respect to the total area of legal Amazon (8 235 430 km2) and the percent cover of

biomass class is given with respect to the area of each vegetation class type.

Table 6 Mean and 95% confidence interval of estimated biomass densities for areas covered by terra firme and floodplain forest

types

Biomass range

Dense

forest

Open

forest

Bamboo

forest

Liana/dry

forest

Seasonal/deciduous

forest

Varzea flooded

forest

Mean (Mg ha�1) 272.5 200.2 212.3 189.7 225.6 248.3

95% Confidence Interval (Mg ha�1) �37.3 �59.2 �31.6 �14.5 �63.1 �23.3
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of ratios for AGDB and BGB, they produce large un-

certainties in total biomass stock.

Converting biomass to carbon (0.5�biomass) gives a

total AGLB of 66 Pg C (range 59–73 Pg C) and a total

biomass of 86 Pg C (range 69–102 Pg C) (Table 7). The

latter is within the range of estimates reported by

Houghton et al. (2001) (39–93 Pg C) and close to the high

end. In contrast, mean forest biomass (158 Mg C ha�1 in

this study) is near the lower end of the range previously

reported (100–232 Mg C ha�1). The difference is ex-

plained, in part, by the larger area considered in this

study (5.46� 106 km2, as opposed to 4� 106 km2) (thus,

more carbon) and, in part, by the consideration of

savannas in this analysis (thus, lowering the mean

biomass). The analysis by Houghton et al. (2001) con-

sidered only the forests of Brazilian Amazônia.

Biomass and climate variables

From the 21 BIOCLIM layers considered in this analy-

sis, only the rainfall variables showed significant corre-

lations with the biomass classes. We discuss several of

these correlations: the mean annual rainfall, the number

of months rainfall is below 100 mm, the number of

months rainfall exceeds 300 mm, and the rainfall of

the driest quarter. These variables relate to total water

availability, the extent of the dry condition, and the

magnitude and seasonality of moisture (Fig. 10). All

four biomass levels are clearly separated by the number

of dry months (rainfall o100 mm) (Fig. 10a). The mean

evapotranspiration rate of a fully wet tropical rainforest

is approximately 100 mm month�1 (Salati & Marques,

1984; Shuttleworth, 1989; Malhi & Wright, 2004). When

the precipitation is o100 mm per month, the forest may

experience a net water deficit; hence, 100 mm threshold

is a good definition for the dry season, and the number

of months with precipitation below this threshold is a

common definition of the length of the dry season for

tropical forests. Biomass values o100 Mg ha�1 occur

largely in regions with long dry season (around 6

months), while forests with 100–200 Mg ha�1 occur in

areas with shorter dry season (almost 4 months). The

area of forests with high biomass density decrease as

the number of dry months increases, indicating the

consistency of moist condition for their distribution.

However, there is no distinct relationship between

biomass classes and the high monthly rainfalls. All four

biomass categories showed similar behavior for the

number of months in which rainfall exceeded 300 mm

(Fig. 10b), suggesting that very high rainfall is not an

important factor in controlling the biomass density. The

results are similar for the relationship between mean

annual rainfall and aboveground biomass. Mean

annual rainfall separates only low from high biomass
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Fig. 9 Contribution of biomass classes to the total biomass of the legal Amazon basin and uncertainty calculated by using the

minimum, maximum, and middle range of each class.

Table 7 Area and the magnitude of forest carbon components (AGLB, AGDB, and BGB) of terra firme and floodplain forests in the

Amazon basin

Forest Type

Area

(km2)

AGLB

(Pg C)

AGDB

(Pg C)

BGB

(Pg C)

TB

(Pg C)

Mean Biomass

(Mg C ha�1)

Terra Firme 5135200 63.02 5.67 13.24 81.93 159.54

Floodplain 328825 3.25 0.29 0.68 4.22 128.33

Total 5 464 025 66.27 5.96 13.92 86.15 157.66

Range 59.19–73.34 1.32–12.27 8.62–17.23 69.13–102.84 140.81–174.49

AGLB, aboveground live biomass; ADGB, aboveground dead biomass; BGB, belowground biomass.
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forests and loses its sensitivity as biomass increases.

The majority of high biomass forests are in regions with

high rainfall distributed evenly throughout the year.

However, the best relationship is found with the

rainfall of the driest quarter (Fig. 10d). This finding

is consistent with the observation that biomass produc-

tion in tropical forests depends on the moisture

available during the dry season where there is ample

light and radiation (Saleska et al., 2003; Malhi et al.,

2006).

Analyses with near surface air temperature show no

significant correlation between temperature and bio-

mass. In general, temperature does not vary signifi-

cantly over the Amazon basin. Except at higher

elevations in the Andes, where temperatures are lower,

most of the basin remains between 24 and 28 1C

throughout the year with annual variations of approxi-

mately 5 1C.

Conclusion

We compiled a large data set of AGLB from 544 forest

plots and a large set of spatial data from remote sensing

satellites to quantify the distribution of Amazonian

forest biomass at fine spatial resolution. We produced

a map of forest biomass classes at 1 km spatial resolu-

tion with reasonable accuracy (better than 70%) that

enabled us to estimate the total carbon stock of the
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basin, including the dead and belowground biomass.

Our estimate of the total carbon content of the Amazon

forests ranged between 77 and 95 Pg C with an average

of 86 Pg C, which was within the range of published

results from different approaches (Houghton et al.,

2001). As we used the extreme ranges of dead wood

and BGB ratios with low and high estimates of AGLB to

compute the total biomass, the range (77–95 Pg C) must

reasonably bound the total carbon stock of the basin.

Efforts to reduce this range must consider at least

three questions.

1. How accurate are ground measurements of biomass

over the basin? In this study, we did not address the

errors associated with the aboveground biomass of

forest plots. However, we know that the individual

plots varied in plot size, the size of sampled trees,

allometric equations, and the biomass components

measured. Although a standard approach may seem

desirable, it is not clear that one approach is

appropriate on forest plots with different species

composition and with different geographical and

environmental characteristics.

2. Is it possible to reduce the uncertainty by improving

the spatial resolution of data layers? This question

might be tested by incorporating all available

high-resolution satellite imagery and employing a

multiscale approach for estimating or extrapolating

biomass. One of the main sources of uncertainty in

our study was the discrepancy between the resolu-

tion of images and the size of the forest plots. The

spectral information obtained from 1 km resolution

data is unlikely to represent the plot biomass or

structure. By incorporating images at 30–100 m reso-

lutions, we may be able to locate the plots directly on

the images and remove location uncertainty, to in-

corporate surface heterogeneity in our calculations,

and to improve the separation of the anthropogenic

landscapes from forests. By using a multiscale ap-

proach, a final biomass map of 100 m resolution, or

finer, might be produced, providing data sets useful

in estimating the area and impact of deforestation on

the carbon stock and changes in the basin.

3. What are the environmental variables responsible for

the magnitude and distribution patterns of biomass

density over the basin? Our results suggest a rela-

tionship between vegetation types and climate con-

ditions. However, climatic conditions do not explain

the distribution of the biomass everywhere. Soil,

geomorphology, radiation and hydrological features,

as well as management and land-use change, impact

forest structure, species composition, and biomass.

The importance of these factors can be addressed in

the future as higher resolution environmental and

remote sensing data layers are acquired. We expect

that data available through the Large Scale Biosphere

Atmosphere Experiment in Amazonia (LBA) and

through other ground measurements obtained from

permanent and carefully organized forest plots, such

as the Amazon Forest Inventory Network (RAIN-

FOR), will reduce the uncertainties inherent in the

data used in this analysis.
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Vegetâo Brasileira, Adaptada a um Sistema Universal. IBGE, Rio de

Janeiro.

Wright S (1996) Phenological responses to seasonality in tropical

forest plants. In: Tropical Forest Plant Ecophysiology (eds Ste-

phen SM, Robin LC, Alan PS), pp. 440–460. Chapman & Hall,

New York.

A G L B I N T H E A M A Z O N B A S I N 837

r 2007 The Authors
Journal compilation r 2007 Blackwell Publishing Ltd, Global Change Biology, 13, 816–837


