
VOLUME 89 NUMBER 43

21 OCTOBER 2008

PAGES 417–432

Eos, Vol. 89, No. 43, 21 October 2008

EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION

Deforestation and forest degradation 

account for between 7% and 30% of total 

anthropogenic carbon emissions [Canadell 

et al., 2007; Denman et al., 2007]. This wide 

range of values results from three major 

uncertainties: rates of deforestation, carbon 

stocks (biomass and soils) in forests prior to 

deforestation, and changes in carbon stocks 

within forests (i.e., both increases from 

growth and decreases from degradation). 

Historically, rates of deforestation and refor-

estation, together with estimates of forest 

biomass, have been used to calculate the 

net flux of carbon between terrestrial eco-

systems and the atmosphere [Woodwell 

et al., 1983; Detwiler and Hall, 1988; Hall and 

Uhlig, 1991; Fearnside, 2000; DeFries et al., 

2002; Achard et al., 2004; Houghton, 2003]. 

This net flux is the difference between the 

sinks of carbon in growing and recovering 

forests and the sources from burning and 

decay associated with deforestation. Satellite 

imagery, particularly from Landsat, has long 

been used to sample deforestation rates 

[DeFries et al., 2002; Achard et al., 2004; 

Skole and Tucker, 1993; Hansen et al., 2008]. 

Obtaining estimates of biomass, reforesta-

tion, and forest growth and degradation, 

however, has proven more difficult.

Recently, the capacity to estimate forest 

aboveground biomass over large areas has 

advanced substantially. Within the past few 

years, both radar and lidar (light detection 

and ranging) sensors have been carried 

aloft on satellites, notably the Geoscience 

Laser Altimetry System (GLAS) on board the 

Ice, Cloud, and land Elevation Satellite 
 ICESat) and the Phased Array Synthetic 

Aperture Radar  (PALSAR) on board the Jap-

anese Advanced Land Observation System 

(ALOS). Other satellites more specifically 

dedicated to obtaining aboveground bio-

mass are being designed, notably, the new 

NASA- led Deformation, Ecosystem Structure 

and Dynamics of Ice  (DESDynI) mission and 

a European-led Biomass Monitoring Mission 

for Carbon Assessment  (BIOMASS).

More than a decade of research—includ-

ing past designs for NASA’s Vegetation Can-

opy Lidar and related European missions—

preceded the development of these satellite 

missions [Dubayah et al., 1997] (see also 

http:// www .cesbio .ups -tlse .fr/  us/  indexbiomass 

.html). Although documentation of the 

research is beyond the scope of this article, it 

is summarized in the literature [Dubayah 

et al., 1997; Lefsky et al., 2002], in workshop 

reports [Bergen et al., 2006; Zebker et al., 

2007], and on the Internet (http:// www . cesbio 

.ups -tlse .fr/ us/  indexbiomass .html). Radar has 

the advantage of penetrating clouds, making 

it particularly useful in many parts of the 

humid tropics. Lidar has the unique capabil-

ity of providing data on forest canopy height 

and vertical structure, which are allometri-

cally related to in situ biomass measurements 

[Dubayah et al., 1997; Lefsky et al., 2002]. 
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Fig. 1. Net change in aboveground biomass for La Selva Biological Station, Costa Rica, 1998–
2005. The figure illustrates the approach of using new remote sensing technology to estimate 
directly changes in carbon stocks. Lidar data from NASA’s airborne Laser Vegetation Imaging 
Sensor  (LVIS) were acquired in 1998 and 2005. Changes in lidar metrics were related to field 
measurements of biomass accumulation and loss in 18 primary and two secondary forest plots. 
This relationship was then used to map biomass dynamics at 1- hectare resolution over the entire 
domain using LVIS data. The comparison with a land cover map (inset) shows primary forests 
as a heterogeneous mixture of sources and sinks, in contrast to secondary forests, which appear 
more uniformly as sinks. Image courtesy of Ralph Dubayah, University Maryland, using field data 
from David Clark and Robin Chazdon.BY R. A. HOUGHTON AND S. J. GOETZ

New Satellites Help Quantify 
Carbon Sources and Sinks
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A Focus on Carbon

These new satellite systems combining 

radar and lidar will change the way carbon 

emissions are determined, thereby increas-

ing the accuracy and also reducing ambigui-

ties of the current approach. Uncertainty 

about biomass density (megagrams per hect-

are) contributes as much as does uncertainty 

about rates of deforestation to the range of 

flux estimates [Houghton, 2005], particularly 

in the tropics where biomass density is great-

est and where rates of deforestation are high-

est [Houghton, 2005; Houghton et al., 2001]. 

Even in developed countries, with repeated 

systematic forest inventories, aboveground 

forest biomass is not spatially mapped. 

Rather, ground-based estimates of mean bio-

mass are determined for administrative dis-

tricts (counties, states, countries). But the for-

ests that are actually deforested may not be 

“average” forests; their biomass may be sys-

tematically higher or lower than the average. 

Assigning an accurate estimate of biomass to 

the forests that are actually deforested will 

reduce the uncertainty of carbon emissions 

by as much as a factor of 2 [Houghton, 2005; 

Houghton et al., 2001]. Spatially complete 

sampling also removes the need for assump-

tions about the distribution of deforestation 

and captures explicitly the heterogeneity of 

site factors that affect carbon dynamics, 

such as rates of decay and growth.

Mapping biomass from satellites will also 

remove a key arbitrary aspect of determining 

carbon emissions. A recurring discussion in 

United Nations Framework Convention on 

Climate Change meetings—in Nusa Dua, 

Bali, Indonesia; Bonn, Germany; and Accra, 

Ghana—over the past year has focused on 

reducing emissions from deforestation and 

degradation, with emphasis placed on refin-

ing the definitions of forest, deforestation, 

and forest degradation [Noble et al., 2000; 

United Nations Framework Convention on 

Climate Change, 2006]. If forests are defined 

as having more than 20% tree cover, for 

example, the carbon released in reducing 

cover from 100% to 20% will not be counted 

as deforestation. And with a forest definition 

of 80% tree cover, the carbon emitted in 

reducing tree cover from 79% to zero will 

also not be counted. The arbitrariness in 

defining forest cover may also account for 

the apparent contradiction between the esti-

mates of deforestation rates and changes in 

forest area from the Food and Agriculture 

Organization of the United Nations [Grainger, 

2008]. Similar arbitrariness and ambiguity 

pertain to definitions of deforestation.

A biomass satellite mission eliminates 

these ambiguities by directly measuring 

aboveground carbon stocks. The most 

important information in determining 

sources and sinks of carbon, from both sci-

entific and policy perspectives, is the accu-

rate estimation of changes in carbon stocks. 

If the stocks are greater (or lesser) at time 2 

than they were at time 1, then the sinks (or 

sources) of carbon can be determined 

directly (Figure 1), without arbitrary defini-

tions of forests, deforestation, or degradation 

and without having to monitor changes in 

land use and land cover. Admittedly, deter-

mining changes in land cover may be criti-

cal for other purposes, such as documenting 

the causes of degradation [Laporte et al., 

2007], but the primary goal of carbon 

accounting is to determine changes in car-

bon stocks.

Limitations and Remaining Uncertainties

There are still some issues about the new 

approach that need to be resolved. For 

example, aboveground carbon stocks do not 

include the large stocks of carbon in below-

ground biomass and soils, and a full 

accounting of changes in carbon will require 

terrestrial ecosystem models. Despite the 

larger stocks of carbon below ground, how-

ever, changes above ground accounted for 

nearly 90% of the emissions of carbon calcu-

lated from changes in land use over the 

period 1850–2000 [Houghton, 2005].

More important, it is unclear what accura-

cies are achievable from satellites over differ-

ent temporal and spatial scales. It will be 

much easier, for example, to observe the 

large reductions in aboveground carbon that 

result from deforestation than the small 

accumulations (or losses) that result from 

forest growth (or degradation) (see Figure 1). 

The biomass satellites will undoubtedly miss 

small losses and accumulations of carbon in 

aboveground biomass, and “small” is so far 

undefined. Current estimated emissions of 

carbon from forest degradation range 

between zero and a magnitude equivalent to 

the emissions from deforestation [Houghton, 

2005]; and the residual terrestrial carbon 

sink is greater than the emissions from defor-

estation [Canadell et al., 2007]. Simply identi-

fying what fraction of the world’s forests 

(and where) are losing or gaining carbon at 

rates that can be observed over a multiyear 

mission would be a substantial improvement 

over current estimates.

We conclude that the general approach 

for estimating terrestrial sources and sinks of 

carbon can be redesigned as a consequence 

of the ability to map biomass from satellites. 

Rates of deforestation will no longer be of 

primary interest. Instead, measurements can 

focus on the appropriate target for carbon 

emissions, namely, change in carbon stor-

age, whether or not deforestation is involved. 

With the new approach, both the accumula-

tions of carbon in growing forests and the 

losses through degradation would be 

directly assessed within the limits of space-

borne instruments.
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Several academic sources have noted 

that the current sunspot minimum seems 

to be unusually long. Indeed, sunspot 

counts are at a 50- year low. As of 27 Sep-

tember, the Sun has had no visible sun-

spots for 200 days this year, the most of 

any year since 1954. Unfortunately, this has 

been interpreted in some media sources as 

showing that there is something wrong 

with the Sun. Some reports have even sug-

gested that we should prepare for a wide-

spread cooling due to a lack of sunspots 

and even that a new mini ice age is on the 

way (see “Sorry to ruin the fun, but an ice 

age cometh,” by P. Chapman, at http://

www.theaustralian .news .com .au/story / 

0,25197,23583376-5013480,00.html). 

True, the total solar irradiance at Earth 

has dropped to a minimum that is lower 

than seen in the previous two cycles (see 

Lockwood and Fröhlich [2008] for a descrip-

tion of the trends in total solar irradiance). 

And the length of the minimum in solar 

activity may actually have some important 

implications. The most extreme solar mini-

mum was the 70- year- long Maunder Mini-

mum of 1645– 1715 that coincided with the 

Little Ice Age. This period consisted of 

extremely severe winters in the Northern 

Hemisphere. While evidence such as this 

indicates a possible link between the solar 

cycle and Earth’s climate, it is not known 

what the mechanism could be. 

Perhaps more pertinent to our current 

technology-based society is the fact that a 

less active Sun means fewer solar storms; 

solar storms pose a threat to astronauts and 

various satellites, including GPS and 

weather satellites. Further, radio bursts from 

solar flares can interfere with cell phones. 

The strongest solar storms are caused by 

coronal mass ejections (CMEs) hitting the 

Earth, and these events can even threaten 

ground-based electronics, aircraft naviga-

tion, and power grids. All of these events 

occur less frequently during solar mini-

mum. 

Yet there is nothing amiss with the cur-

rent solar minimum. NASA solar physicist 

David Hathaway at the NASA Marshall 

Space Flight Center was quoted saying, “the 

ongoing lull in sunspot number is well 

within historic norms for the solar cycle” 

(see “What’s wrong with the Sun? (Noth-

ing)” at http:// science.nasa.gov/headlines/

y2008/11jul_ solarcycleupdate.htm). For 

example, there were 6 years in the past cen-

tury with more spotless days than 2008, 

including 1913, which had more than 

300 spotless days. Further, examination of 

the interplanetary magnetic field (IMF) 

activity supports this conclusion and shows 

that while the sunspot number may still be 

low, IMF activity this solar cycle appears to 

be increasing as expected, with solar maxi-

mum predicted for 2010. 

Boxcar Averages of the

Interplanetary Magnetic Field

IMF data can be analyzed in a manner 

identical to that used to calculate the sun-

spot number. This is important in that IMF 

activity is indicative of overall solar activity. 

In fact, IMF activity seems to lead the over-

all activity, presenting the possibility that it 

can serve as an early indicator of upcoming 

solar activity. 

Keating et al. [2001] and Keating and Jae-

ger [2003] described how a long- term aver-

age, consisting of a smoothed, 13- month 

“boxcar” mean of the magnitude of the z 

component of the magnetic field  (B
z
(m)), 

demonstrated a cyclical pattern similar to 

the solar cycle with approximate correla-

tion to the solar sunspot cycle. The boxcar 

method of averaging is useful for smoothing 

the data in order to eliminate short-term 

variations. The method consists of summing 

B
z
(m) averages of 11 consecutive months, 

beginning with the month 5 months prior to 

the month being examined and ending with 

the month 5 months after the month being 

examined. A final term is then added to this 

sum: one half of the data average for the 

month that falls 6 months previous plus one 

half of the data average for the month that 

falls 6 months following. 

This method takes the average data from 

13 months and yields a sum of 12 full 

months of averaged data. This sum is then 

divided by 12 to give a monthly running 

average B
z
(m). For instance, the boxcar 

average for June would consist of the sum 
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Fig. 1. Actual boxcar averages for measured 
Bz(m) magnitude and the forecast results of 
applying the McNish- Lincoln technique. Actual 
data are represented by solid squares, while 
the calculated results are shown as a curve. 
The correlation between the two is due to the 
fact that the McNish-Lincoln method uses actu-
al data when available. The calculated forecast 
is performed only for the time period after the 
end of the actual data. This plot shows that 
Bz(m) reached its minimum average magni-
tude in mid-2007 and has begun to increase in 
magnitude. The forecast is that it will continue 
to increase slowly through the first part of 
2008, but will then begin to rapidly increase in 
magnitude beginning in the latter part of this 
year, reaching its first peak in late 2009. 

Table 1. Results of the McNish-Lincoln Technique Forecast for the B
z
(m) Boxcar Average Monthly Values for 2008 and 2009a

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2008
B

z
(m) averages 1.45 1.45 1.47 1.46 1.42 1.43 1.49 1.60 1.68 1.78 1.89 1.9

Uncertainty 0.06 0.11 0.12 0.20 0.39 0.30 0.25 0.25 0.24 0.17 0.09 0.07

2009
B

z
(m) averages 2.08 2.19 2.30 2.37 2.46 2.57 2.60 2.63 2.67 2.68 2.67 2.70

Uncertainty 0.12 0.11 0.13 0.16 0.14 0.11 0.22 0.27 0.26 0.27 0.28 0.36

aAdding and subtracting the uncertainty estimates to the predicted value yields the upper and lower bounds to the 90% confidence interval.  All values are in nanoteslas.


