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Abstract
The forests of Russia cover a larger area and hold more carbon than the forests of any other
nation and thus have the potential for a major role in global warming. Despite a systematic
inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations
in the stocks within large aggregated units of land are unknown, thus hampering measurement
of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year
2000 by developing a relationship between ground measurements of wood volume at 12 sites
throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance
distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree
analyses, we used the MOD43B4 product to assign biomass values to individual
500 m × 500 m cells in areas identified as forest by two satellite-based maps of land cover.
According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because
of different estimates of forest area. Although optical data are limited in distinguishing
differences in biomass in closed canopy forests, the estimates of total living biomass obtained
here varied more in response to different definitions of forest than to saturation of the optical
sensing of biomass.
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1. Introduction

Although systematic forest inventories have been used to
define the amount of carbon held in northern mid-latitude
forests (Goodale et al 2002), the spatial distribution of carbon
stocks is not well characterized. The spatial distribution
is, nevertheless, important for determining the emissions
of carbon that result from disturbance or deforestation and
the uptake of carbon that results from recovery and growth
(Houghton 2005). Estimates of carbon sources and sinks based
on forest inventories are variable, especially for Russia and
the former Soviet Union, where the net carbon balance ranges

between a source of 0.5 Pg C/yr and a sink of 1.02 Pg C/yr
(review of 15 studies by Shvidenko et al (1996), Goodale et al
(2002)). Not only does Russia represent the largest political
unit in the northern hemisphere and contain the largest stocks
of terrestrial carbon (Apps et al 1993, Goodale et al 2002), it
is also the country where estimates of net carbon flux are most
divergent.

The wide range of flux estimates based on Russian
forest inventory data is ironic because most of the estimates
are based on essentially the same data. The federal forest
service of Russia collects detailed stand level information on
stemwood volumes over about 30 million ha (or about 4%
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Figure 1. The locations of 12 field sites among four geographic regions (east–west) and five vegetation zones (north–south). Although the
vegetation zones are labeled as forests, they are not necessarily forested, especially in the northern taiga and the forest steppe zones (both of
which have large treeless areas). The characteristics and names of sites are given in table 1.

of the forest area) annually (Kukuev et al 1997). Changes
in the forests (areas harvested, burned, planted) are collected
by forest management enterprises (leskhozes) and aggregated
to the provincial and national level. The variability among
published estimates of biomass reflects not only updating
and aggregation, but different methods for converting wood
volumes to biomass, and biases introduced through economic
and political incentives to exaggerate accomplishments (e.g.,
land areas planted) and to under-report problems (e.g., forest
area burned) (Alexeyev et al 2004).

If a correlation could be demonstrated between contempo-
rary satellite data and forest biomass, the relationship might
be used to distribute forest biomass across all of Russia in
a consistent, transparent manner. In this paper we report an
attempt to use satellite data to map the biomass of Russian
forests for the year 2000. We used MODIS satellite data (and
MODIS products), calibrated against inventory data from in-
dividual stands sampled between 1998 and 2000, to estimate
forest biomass across all of Russia.

2. Methods

2.1. Selection of sampling sites

The territory of Russia is commonly divided into four
geopolitical regions: European Russia (including the Ural
Mountains), Western Siberia, Eastern Siberia and the Far
East (figure 1). In contrast to these longitudinally
arranged geopolitical regions, the major forest biomes of the
Russian Federation generally extend along east–west parallels
(figure 1): northern taiga (1), middle taiga (2), southern taiga
and mixed forest (3), temperate forest (4), and forest steppe (5).
The intersection of the four geopolitical regions with the five
biomes defines 15 major geographical units.

2.2. Forest inventory data

As part of NASA’s Land Cover/Land Use Change (LCLUC)
program, we developed collaborative relationships with a
number of Russian forest scientists. These scientists were
crucial for obtaining local forest inventory data, within 12 of
the 15 geographical units (figure 1, table 1). The specific
locations for the sites were determined from the availability
of forest inventory data. Sites had to be large enough to
accommodate at least 1000 forest stands (polygons) of 3 ha
or greater.

For each site, we obtained a digital map of forest polygons
(stands) and the inventory data characterizing each polygon.
Data included, for each polygon: area, forest type, dominant
species, species composition, age, height, stocking density,
volume of live stem wood (growing stock), and volume of
snags and logs. Forest types or species groups included pine,
spruce, mixed conifer, deciduous, and mixed (coniferous and
deciduous) forest. Altogether, for the 12 sites, we obtained
information for 42 182 polygons, covering a total area of
750 907 ha. Polygons ranged in size from 0.7 to 1503 ha, with
an average of 18 ha/polygon.

Forest growing stock (m3 of wood per hectare) was
converted to biomass (Mg ha−1) for each polygon using the
allometric equations of Alexeyev and Birdsey (1998). The
coefficients for the equations varied with forest age, species
group, and region. They defined total forest biomass, including
living above- and below-ground tree biomass and under-story
vegetation. Carbon was assumed to be 0.5× biomass.

2.3. Evaluating the relationship between forest biomass and
MODIS products

We used the MODIS bidirectional reflectance distribution
function (BRDF) product (MOD43B4) as the independent
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Table 1. Locations and characteristics of the sites used in this study.

Region Site description
Regression
tree r2

Number of
polygons

Average
size of
polygon (ha)

Average
biomass
(Mg ha−1)

Std dev of
biomass

7. Krasnoyarsk Yart Larch dominant forest,
avg. age 175 yrs

0.67 1130 47.15 111.80 53.72

9. Northern
Khabarovsk

Larch dominant with birch
mixed forest, along floodplain,
avg. age 65 yrs

0.37 1561 28.58 64.38 40.22

2. Karelia Pine/spruce dominant forest,
avg. age 67 yrs

0.35 3759 16.16 102.67 49.50

8. Krasnoyark Usol Pine/birch mixed forest,
avg. age 100 yrs

0.31 1895 27.47 99.61 48.53

12. Kamchatka Mixed deciduous forest of
birch, poplar and alder,
avg. age 122 yrs, mountain slope

0.22 1596 28.36 128.11 66.98

10. Southern
Khabarovsk

Mixed forest of pine, larch,
elm and basswood, avg. age
135 yrs, > 550 m elevation

0.19 3158 29.48 100.09 29.07

11. Magadan Coastal and mountain larch
dominant forest with pine mixed,
avg. age 105 yrs, small stature

0.19 1757 54.89 41.71 34.98

1. Murmansk Birch dominant forest with
pine/spruce mix, northern most
location, small stature,
avg. age 120 yrs

0.17 2832 33.70 38.42 15.59

5. Udmurtia Pine/spruce dominant with birch
mixed forest, fragments
surrounded by large scale
agriculture, avg. age 43 yrs

0.07 2104 6.31 99.12 58.90

6. Novosibirsk Pine dominant forest fragment
surrounded by agriculture,
avg. age 85 yrs

0.07 5351 3.40 48.28 60.67

3. St. Petersburg Mixed forest with spruce, pine,
birch, and aspen,
avg. age 73 yrs

0.07 8194 4.06 133.18 57.09

4. Kursk Oak dominant forests with
poplar/alder mix, isolated
forest fragments surrounded by
agriculture, avg. age 50 yrs

0.01 2019 4.69 121.93 61.48

variable for predicting biomass. The MOD43B4 product is
corrected for the off-nadir characteristics of scanning sensors
and for atmospheric haze and aerosols. The product is a 16-
day composite of MODIS reflectance at a spatial resolution
of 1 km. We used the composite for mid-July 2000, and
resampled to 500 m resolution using a nearest-neighbor
algorithm.

To geo-register the satellite and ground data at each
site, we used Landsat ETM+ data, along with spatially
explicit GIS layers, including the hydrological network, stand
polygon boundaries, and geographic identification. We then
superimposed the MODIS product over the geo-referenced
map of forest polygons. Because the stand polygons varied in
size, some MODIS cells included a single polygon and some
included multiple small polygons. When a cell included more
than one forest polygon, we calculated an area-weighted mean
biomass for each 500 m × 500 m MODIS cell (figure 2). Cells
that contained polygons of non-forest were omitted from the
training procedure. The calculation of weighted mean biomass
was an aggregation procedure that often prevented us from
assigning a particular forest type to a MODIS cell. Thus, we
did not distinguish among species groups or forest types but,

instead, lumped all species groups together as forests. The
aggregation procedure also reduced the effective number of
forest ‘polygons’ (now aggregated to 500 m × 500 m cells),
at some sites substantially.

Because satellite reflectance data (predictive variables)
are highly intercorrelated, and the response (biomass) is
potentially non-linear, standard multiple regression techniques
were unsuitable. Instead, we used bootstrapped regression
trees to develop associations between mean reflectance and
biomass. Specifically, we used Breiman and Cutler’s random
forests (RF) ensemble prediction method (Breiman 2001, Liaw
and Wiener 2002). Using the RF algorithm, we built 500
regression trees using different random samples of the data.
Model error using the RF algorithm was quantified with the
one-third of the data randomly excluded from the construction
of each of the trees. The analysis was performed with the
randomForest package (Liaw and Wiener 2002) in the R
programming environment (R Development Core Team 2006).

We used two different land-cover maps, the GLC2000
land-cover product (Bartalev et al 2003) and the MOD12Q1
land-cover product (Schaaf et al 2002), to identify areas of
forest and non-forest throughout Russia. The final step was
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Figure 2. MODIS 500 m × 500 m cells superimposed on polygons from field sites in Krasnoyarsk–Yartsevsky (a) and Novosibirsk (b). The
different shades indicate variations in biomass.

Figure 3. Observed and predicted biomass for 500 m × 500 m cells of forest. (a) Predictions based on regression-tree models incorporating
data from all 12 sites. (b) Three examples of predictions based on regression-tree models with data from individual sites.

to assign a biomass value to each 500 m × 500 m cell of forest
using the results from the ensemble of 500 regression trees.

3. Results

For individual sites, the fraction of the variance explained by
the regression trees varied between 0.01 and 0.67 (table 1
and figure 3). When data from all of the sites were lumped

in the regression trees, the predictive capability of the model
(i.e., variance explained) was 0.61. In general, the models
underestimated polygons with high biomass and overestimated
polygons with low biomass.

The highest values of biomass appeared in the middle and
southern taiga. The lowest values were in the northern taiga
and the forest steppe (savanna) at the southern limit of forest
distribution (figure 4). The frequency distribution of biomass

4



Environ. Res. Lett. 2 (2007) 045032 R A Houghton et al

Figure 4. (a) Map of Russian forest biomass as predicted by the MODIS land-cover product (MOD12Q1). (b) Map of Russian forest biomass
as predicted by the GLC2000 land-cover product (Bartalev et al 2003).

classes in the forests of Russia was skewed toward forests
with lower biomass, especially with the GLC2000 land-cover
product (figure 4, histograms).

4. Discussion

The number and distribution of the 12 sites seem to
have been adequate for capturing the spectral signatures of
forests throughout Russia, as calculated by Euclidian distance
between the MODIS spectral bands. Despite the good spectral
coverage given by the sites, however, the models of biomass
developed for individual sites never explained more than 45%
of the variation in biomass at other sites and often explained
less than 10% of the variation. When the combined model
developed with data from all 12 sites was tested at individual
sites, its explanatory power varied between 0.04 and 0.71.

4.1. Why were the satellite data so poor at explaining biomass
at some sites?

The error of our estimates of biomass was ∼40%. In
other words, 39% of the variability in predicted biomass was
unexplained by the regression model. It is not surprising that
satellite optical data were poor at distinguishing variations
in biomass, especially in closed-canopy forests. We found
that more of the variance in biomass was explained when we
considered only young forests (<20 years) (presumably with
open canopies), confirming that at least part of the difficulty in
predicting biomass resulted from differences in biomass under
closed canopies.

A second limitation to the prediction of above-ground
biomass with MODIS data seems to have been the extent to

which the forest polygon data matched the spatial resolution
of MODIS cells. Table 1 ranks the test sites by the ability
of the regression-tree approach to predict biomass at that site
(column 3, r 2). The goodness-of-fit was roughly correlated
with the average size of the forest polygons, although Karelia,
Magadan, and Murmansk were exceptions.

It was not the number of polygons that limited the
method’s success. We used subsets of the polygons in the
Krasnoyarsk Yart site to test whether the predictive capability
of the regression trees was sensitive to the number as well
as the size of training polygons. The relationship between
observed and predicted biomass was robust with as little as 3%
of the data.

The errors of the forest inventory data are uncertain. One
crude estimate of error may be obtained from two recent
estimates of Russian forest biomass. Alexeyev and Birdsey
(1998) and Shvidenko and Nilsson (2003) used the same
inventory data and the same forest area, yet reported total
biomass of 56 Pg and 68.8 Pg, respectively (table 2). The
difference (20% of the mean) is probably a conservative
estimate of ‘inventory’ error because it pertains only to that
part of the error related to allometry (calculation of biomass
from wood volumes).

Other studies have used optical satellite data, calibrated
with data from forest inventories, to determine biomass over
large areas in temperate zone and boreal regions (Myneni
et al 2001, Baccini et al 2004, Zhang and Kondragunta 2006,
Muukkonen and Heiskanen 2007) and in the tropics (Foody
et al 2001, Saatchi et al 2007). These studies suggest that our
predictive model might have been improved (1) had we used
finer spatial resolution data (e.g., ASTER data) for integrating
ground measurement with the coarser resolution MODIS data
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Table 2. Estimates of biomass for the forests of Russia.

Forest
area
(106 ha)

Total
biomass
(Pg)

Average
biomass
(Mg ha−1) Reference

884 148.0 167.4 Dixon et al (1994)
771.1 94.2 122.2 Krankina and Dixon (1994)
771.1 70.2 91.0 Isaev et al (1995)
763.5 84.2 110.2 Krankina et al (1996)
623.2 139 223.0 Turner et al (1998)
771.1 56 72.6 Alexeyev and Birdsey (1998)
774.2 68.8 88.8 Shvidenko and Nilsson (2003)

523.6 46.2 88.2 This study: MODIS
land-cover product

826.6 66.6 80.6 This study: GLC2000

(Muukkonen and Heiskanen 2007); (2) had we used averaged
MODIS data (several dates) (Muukkonen and Heiskanen
2007); and (3) had we included climatic, edaphic, and
topographic data as additional independent variables (Baccini
et al 2004). Finally, although optical data were important in
discriminating biomass classes in tropical Amazonian forests,
the overall capacity of the predictive model developed by
Saatchi et al (2007) was improved when optical data were used
in combination with radar data.

4.2. How do these results compare with other estimates?

We are unaware of other maps of forest biomass or
growing stock for the forests of Russia. The first phase
of the European SIBERIA project recently used synthetic
aperture radar (SAR) data to estimate forest biomass over a
900 000 km2 area in Central Siberia, but the approach failed
to distinguish among biomass classes greater than 80 m3 ha−1

(∼64 Mg biomass ha−1) (Gaveau et al 2003, Wagner et al
2003). According to our analysis, ∼60% of the forest area in
Russia had biomass values greater than 64 Mg ha−1.

Despite the lack of biomass datasets at high spatial
resolution, several studies have estimated the total carbon
stocks in forests for broad administrative units. Alexeyev and
Birdsey (1998), for example, reported the biomass of forests
for Oblasts, Kray, or Republics (71 of them across Russia).
When we summed the biomass values for all of the forested
cells within these same units, our results gave remarkably
similar totals (figure 5).

Our estimates of total forest biomass for all of Russia
(46 and 67 Pg biomass for the MODIS and GLC2000 maps,
respectively) include the recent estimate by Alexeyev and
Birdsey (1998) (56 Pg), and our higher estimate is similar to
that of Shvidenko and Nilsson (2003) (69 Pg) (table 2). These
comparisons are not very satisfying, however, because total
biomass is sensitive to forest area. Average forest biomass, in
contrast, allows a better comparison, and our higher estimate
(88.2 Mg ha−1) is similar to the estimate by Shvidenko and
Nilsson (2003) (88.8 Pg).

It is important to recognize that the two estimates of
total forest biomass we report result from hugely different
estimates of forest area. The total area of Russian forests was
523.6 × 106 ha according to the MODIS land-cover product

Figure 5. Observed (inventory) and predicted (regression-tree
approach) total biomass for 71 administrative districts of Russia. The
line is the 1:1 slope.

(MOD12Q1) (Schaaf et al 2002) and 826.6×106 ha according
to the GLC2000 product (Bartalev et al 2003). However,
neither estimate included the areas of forest contained in
the mixed category of ‘forest and agriculture’, so both may
be underestimates. The major difference between the two
satellite-derived estimates was their treatment of woodlands
and shrublands. Such lands are included as forests in the
GLC2000 product and excluded in the MOD12Q1 product
(figure 4). The difference is particularly conspicuous in the
‘northern taiga’ and includes our site in northern Murmansk.
The Russian forest inventories recognize an intermediate area
of forest in their classification (771 × 106 ha) (table 2).

5. Conclusion

The attempt to use MODIS data to distribute forest biomass
across Russia was only partially successful. Positive aspects
included the observations (1) that MODIS data and forest
biomass were generally well correlated at sites where the forest
polygons were larger than MODIS cells (500 m × 500 m);
(2) that the spectral signatures from the 12 training sites
selected in this study seemed to represent forests throughout
the country; (3) that the map of forest biomass produced from
this work appeared reasonable in terms of the distribution
of biomass classes; and (4) that the total forest biomass for
individual political units compared well with estimates based
on data from the forest inventories of Russia.

The less successful aspects of the work included the
observations (1) that MODIS data and forest biomass were
not well correlated at sites where forest polygons were smaller
than MODIS cells and even in some sites with large forest
polygons; and (2) that predictive models of forest biomass
developed at individual sites did not apply outside the borders
of the training site. It is not news that optical data are
insensitive to biomass under closed canopies. Nevertheless,
MODIS data did capture gross differences in biomass across
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broad environmental gradients and across obvious differences
in forest structure (for example, non-forests, open forests,
young forests, and old forests). The maps of forest biomass
obtained through this analysis will help constrain estimates of
carbon emissions associated with changes in land use, fires,
and other disturbances (Houghton 2005).

The difference between the maps of forest cover confirms
the importance of determining biomass independently of land
cover. Biomass is a continuous variable, with a wide range
of values within each ecoregion or ecosystem. It is not well
characterized by discrete classes of land cover or forest type.
The capability of determining forest biomass from space would
eliminate much of the arbitrariness of distinguishing forest
from woodland, and of defining forests and deforestation for
carbon accounting. Sources and sinks of carbon are the result
of changes in biomass (carbon stocks), whatever the cause.
They are better estimated by measuring changes in carbon
stocks directly than by observing transitions across an arbitrary
threshold of forest–non-forest.
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