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Abstract

Seven years of carbon dioxide flux measurements indicate that a � 90-year-old spruce

dominated forest in Maine, USA, has been sequestering 174 � 46 g C m�2 yr�1 (mean � 1

standard deviation, nocturnal friction velocity (u
*
) threshold 40.25 m s�1). An analysis

of monthly flux anomalies showed that above-average spring and fall temperatures were

significantly correlated with greater monthly C uptake while above-average summer

temperatures were correlated with decreased net C uptake. Summer months with

significantly drier or wetter soils than normal were also characterized by lower rates of C

uptake. Years with above-average C storage were thus typically characterized by warmer

than average spring and fall temperatures and adequate summer soil moisture.

Environmental and forest–atmosphere flux data recorded from a second tower

surrounded by similar forest, but sufficiently distant that flux source regions

(‘footprints’), did not overlap significantly showed almost identical temperature and

solar radiation conditions, but some differences in energy partitioning could be seen.

Half-hourly as well as integrated (annual) C exchange values recorded at the separate

towers were very similar, with average annual net C uptake differing between the two

towers by o6%. Interannual variability in net C exchange was found to be much greater

than between tower variability. Simultaneous measurements from two towers were used

to estimate flux data uncertainty from a single tower. Carbon-flux model parameters

derived independently from each flux tower data set were not significantly different,

demonstrating that flux towers can provide a robust method for establishing C exchange

model parameters.
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Introduction

The eddy covariance technique has played a vital role

in improving our understanding of ecosystem physiol-

ogy and the functioning of the carbon cycle (Running

et al., 1999; Baldocchi, 2003). However, several uncer-

tainties are presently limiting broader interpretation

and use of ecosystem–atmosphere carbon dioxide

(CO2) flux data. For example, studies have demon-

strated variation in annual net ecosystem C exchange

(NEE) (Goulden et al., 1996a; Barford et al., 2001;

Aubinet et al., 2002; Barr et al., 2002), but it has been

difficult to rigorously (statistically) attribute this C

exchange variation to concomitant variation in climatic

factors. Part of the problem lies with the complexity of

ecosystem response to the environment; annual carbon

exchange depends upon the integrals of both photo-

synthetic uptake and respiratory loss. Differences in the

integration period (season length), interannual varia-

tion in the factors that affect photosynthesis and

respiration (e.g. light, temperature, and water avail-

ability), and variation in the biological responses to

these environmental factors all contribute to differences
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in NEE. Without specific attribution, however, it is

difficult to reject the null hypothesis that observed

interannual variability simply represents ‘noise’ in

either the functioning of the ecosystem, the flux

measurement system, or some combination. An alter-

native approach is to test for correlation in two

independent measurements of C flux recorded, for

example, at two separate towers. A high degree of

statistical significance in that correlation would give us

confidence that the observed variations were real, even

if we did not completely understand their cause.

Related to this are questions about how well flux

values obtained at one location characterize the overall

response of the ecosystem under study. For example,

how spatially relevant are the single-tower estimates

emerging from the C-flux networks? Another way to

frame this question is, how robust are model parameter

values inferred from flux data? Would an independent

data set yield similar C-flux model parameters?

Here, in an effort to address these questions, we

compare results from two independent flux systems

and explore the larger question of the causes of

interannual variability in forest NEE. We investigate

interannual variability by correlating climatic and

carbon-flux anomalies and also by parameterizing a

model using 1 year of flux data, then testing the ability

of the model to predict NEE in subsequent years.

Seven years of ecosystem–atmosphere CO2-flux

measurements were made using the eddy covariance

technique over spruce-hemlock vegetation at the How-

land AmeriFlux site near the southern ecotone of the

boreal forest in eastern North America. For 3 years, we

obtained concurrent data from a second flux tower

located in similar vegetation but � 775 m away from

our main tower. Previous work shows this to be a

suitable site for flux measurements (Hollinger et al.,

1999).

Methods

Site description

Studies were carried out at the Howland Forest

AmeriFlux site located about 35 miles north of Bangor,

ME, USA (451150N, 681440W, 60 m a.s.l.). This site is

commercial forestland owned by the International

Paper Company Ltd. Forest stands are dominated by

red spruce (Picea rubens Sarg.) and eastern hemlock

(Tsuga canadensis (L.) Carr.) with lesser quantities of

other conifers (primarily balsam fir, Abies balsamea (L.)

Mill., white pine, Pinus strobus L., and northern white

cedar, Thuja occidentalis L.) and hardwoods (red maple,

Acer rubrum L. and paper birch, Betula papyrifera

Marsh.). Fernandez et al. (1993) and Hollinger et al.

(1999) have previously described the climate, soils, and

vegetation at Howland.

For this study, we characterized forest vegetation

(tree species and diameter) in 48 plots around each of

two research towers. Plots were 7.315 m in radius and

followed the design of the USDA Forest Service Forest

Inventory and Analysis (FIA) subplots (US Department

of Agriculture, Forest Service, 2002). An FIA ‘plot’

normally consists of three subplots arranged in a

triangle (36.6 m between centers) with a fourth subplot

in the center of the triangle. Our plots were located on

301 azimuth lines at 50, 100, 200, and 400 m distance

from each tower. Total and foliage biomass in these

plots were calculated using the allometric equations of

Young et al. (1980).

The research towers were separated by �775 m

and instrumented with identical eddy covariance sys-

tems. The first flux tower (‘main’ tower, 45.204071N,

68.740201W) was established in 1995 and the second

(‘west’ tower, 45.209121N, 68.747001W) in 1998.

Flux measurements, calculations, and corrections

Fluxes were measured at a height of 29 m with systems

consisting of model SAT-211/3 K 3-axis sonic anem-

ometers (Applied Technologies Inc., Longmont, CO,

USA) and model LI-6262 fast response CO2/H2O

infrared gas analyzers (LiCor Inc., Lincoln, NE, USA),

with data recorded at 5 Hz. Precise timebase cards

(model NTR2000-P, Kontron, San Diego, CA, USA) kept

the flux systems synchronized to within 10 s. The clocks

on the data loggers used to record environmental data

(model 21X, Campbell Scientific Inc., Logan, UT, USA)

were adjusted approximately monthly. The flux mea-

surement systems and calculations are described in

more detail in Hollinger et al. (1999). CO2 and H2O

fluxes were corrected for high-frequency losses in the

measurement system (damping in the tubing and

analyzer) following the procedure of Goulden et al.

(1996b). This involves online calculation of sensible heat

fluxes calculated with sonic anemometer temperature

signals that have been digitally filtered to match the

frequency response of the CO2 and H2O channels.

Specifically, half-hourly CO2 and water vapor fluxes are

multiplied by H/Hfn where H is the heat flux calculated

with the unfiltered sonic temperature and Hf1 and Hf2

are heat fluxes calculated with temperature signals

filtered to match the high-frequency cutoff of the IRGA

channels. This approach has the advantage of not

assuming any particular spectral shape but does

assume cospectral similarity between the fluxes. To

correct for low-frequency losses in heat, water vapor,

and CO2 fluxes resulting from a running mean filter

(600 s) and half-hourly block averaging (Sakai et al.,
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2001), we used the Horst/Massman approach of

calculating a transfer function based on stability and

theoretical spectra (see also Moore, 1986; e.g. Horst,

1997, 2000; Massman, 2000, 2001). The equations in

Massman (2001), Table 1 were used but with p, the term

accounting for high-frequency corrections, set to zero.

Our correction philosophy is thus a hybrid, using a

spectral model and transfer function to correct for

missing low-frequency contributions and a ratio of

filtered to unfiltered heat fluxes to account for missing

high-frequency fluctuations. Average high- and low-

frequency CO2-flux corrections in the daytime were

5.6% and 6.8%, respectively, and at night, 10.1% and

7.9%. A spreadsheet with our implementation of the

Horst/Massman spectral corrections is available from

the first author.

Half-hourly flux values were excluded from further

analysis if the wind speed was below 0.5 m s�1, sensor

variance was excessively high or extremely low

(Hollinger et al., 1995), rain or snow was falling, half-

hour sample periods were incomplete or in case of

instrument malfunction. The sign convention used here

is that carbon flux into the ecosystem is defined as

negative.

At night, a stable atmosphere often limits the

applicability of the eddy covariance approach (Hollin-

ger et al., 1994; Black et al., 1996; Goulden et al., 1996a;

Lee, 1998). Hollinger et al. (1994) identified stable layer

formation and breakdown as a cause of intermittent

nocturnal CO2 flux, and showed that CO2 efflux from a

forest increased with increasingly negative sensible heat

flux (downward transport of warm, unstable air).

Goulden et al. (1996a) introduced the idea of a friction

velocity threshold, ðu� ¼
ffiffiffiffiffiffiffiffiffi
w0u0

p
Þ where nocturnal CO2-

flux data were only accepted as valid when they

exceeded a predetermined value (in the case of Goulden

et al., 1996 of 0.2 m s�1). This approach is now generally

accepted (Hollinger et al., 1999; Aubinet et al., 2002; Barr

et al., 2002; Carrara et al., 2003). There is potential

concern about how somewhat arbitrary nocturnal u
*

thresholds affect integrated estimates of CO2 exchange,

and we address this issue in the Appendix.

To obtain annual estimates of C exchange, values

missing from the half-hourly record of annual NEE

were modeled by combining estimates of canopy

photosynthesis and nocturnal respiration. Daytime

CO2 exchange rates were obtained from Michaelis–

Menten models of photosynthetically active photon

flux density (PPFD) with coefficients fitted on a

monthly basis. Missing nocturnal CO2 exchange values

were obtained from second-order Fourier regressions

between Julian day (JD) and nocturnal respiration.

Fourier regressions have several advantages over

temperature-driven exponential relationships including

a lack of bias, no need for external driving data, and

similar or higher R2 values.

Footprint calculations

The flux footprint is the contribution per unit emission

from each element of a surface area source to the

vertical scalar flux measured at a certain height above

the surface (Horst & Weil, 1992). In this analysis, the

footprint estimations are carried out using the simple

analytical footprint model proposed by Horst & Weil

(1994). Despite its simplicity, this model uses height-

dependent wind and eddy-diffusivity profiles and is

evaluated against direct observations above canopies of

various roughness (Finn et al., 1996; Leclerc et al.,

2003a, b). Horst & Weil (1994) showed the crosswind-

integrated footprint; f
yðx; zmÞ as a function of �z=zm,

where �z is the mean plume height and zm is the

measurement height:

f
yðx; zmÞ ¼ zm

�z

� �2�uðzmÞ
Uð�zÞ Ae�ðzm=b�zÞs : ð1Þ

The mean horizontal wind speed ð�uÞ is obtained from

the logarithmic profile and the mean plume speed (U)

is calculated as the wind speed at a fraction (c) of the

mean plume height. The constant s is the shape factor

and is taken as 1 in unstable, 1.5 in near neutral and 2 in

stable conditions and A and b are functions of s. The

dependence of the footprint on stability, surface rough-

ness and measurement height is contained in the

dependence of these quantities on �z=zm. The inputs

for the model are measurement height, canopy height

(h), roughness length (0.1h), displacement length

(0.75h), Obukhov length (L) and friction velocity (u
*
).

Statistical analyses

We used a commercial data analysis package (COPLOT,

CoHort Software, 2002) for calculation of means,

Pearson’s product moment correlation coefficients,

analysis of variance, and linear and nonlinear regres-

sion analyses using least-squares techniques. Reduced

major axis (RMA) regressions were calculated with the

PAST program (Hammer et al., 2001). In the text, we

refer to coefficients of determination from regression

analysis as ‘R2’ values and Pearson’s product moment

correlation coefficients as ‘r’ values.

To examine the two-tower correlation of environ-

mental or flux data as a function of frequency

(coherence spectra, von Storch & Zwiers, 1999), we

used a computer program developed by Carter & Ferrie

(1979). Time periods of 512 contiguous half-hourly

(PPFD) or 15 min (Tair, CO2 concentration, fluxes) data

without any missing values were selected for these
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analyses. To calculate maximum likelihood (ML) para-

meter estimates, we used the Monte Carlo method

(Metropolis et al., 1953) to minimize the sum of squares

of the weighted differences between measured and

modeled values (Press, 1993).

Results

Forest characteristics

Forest plots around the towers were dominated by red

spruce and eastern hemlock, which together accounted

for about 69% of the live basal area. Faster growing

species including red maple, birch, and white pine,

together accounted for 17% of the live basal area and

the slower growing northern white cedar for most of

the rest. Mean live basal area in plots around the west

tower at 56.7 � 16.5 m2 ha�1 (mean and standard

deviation) was somewhat higher than around the main

tower (47.6 � 16.6 m2 ha�1, t5 2.07, Po0.05). Closer

inspection of the data shows that basal area of plots

near both towers was similar, but that plots 400 m from

the main tower had values lower than similarly distant

plots around the west tower. This difference was mostly

because of several plots located east of the main tower

that fell in stands harvested within the past 20 years.

Mean basal area of plots close to both towers was not

significantly different (54.4 � 14.0 m2 ha�1 main tower,

59.1 � 13.2 m2 ha�1 west tower, t5 1.18, P5 0.24).

Total and foliage biomass on plots around the main

tower (119.7 � 47.1 t C ha�1 total, 9.7 � 3.8 t C ha�1 foli-

age biomass) were significantly less (t-tests, Po0.05)

than on plots around the west tower (150.8 �
58.5 t C ha�1 total, 11.5 � 3.2 t C ha�1 foliage biomass).

Plots within 50 m of the towers were similar, but plots

100–400 m from the west tower contained, in general,

fewer, larger trees than those around the main tower,

accounting for the similarity in basal area but difference

in standing biomass.

Nocturnal CO2 fluxes

In a previous study (Hollinger et al., 1999), we omitted

Howland nocturnal CO2-flux values from further

analysis when the friction velocity, u
*
, was below

0.15 m s�1. With six additional years of data, we

revisited this decision (see Appendix) and now

conclude that a higher u
*

threshold of 0.25 m s�1 is

justified, but because of uncertainties in setting the

threshold, we bracket our estimates of NEE with similar

calculations using u
*

thresholds of 0.20 and 0.30 m s�1.

The result of this decision is to decrease the NEE value

previously reported at Howland (Hollinger et al., 1999)

by � 25%.

Spatial variability in environmental variables and fluxes. We

did not expect to see systematic differences in average

environmental measurements recorded on towers at the

same elevation and separated by only 775 m (Table 1).

Comparing data recorded in 2000, half-hourly air

temperature and incoming PPFD values from the

towers are nearly identical (slopes close to 1 and very

high R2 values, RMA regressions). The 1.8 1C offset in

air temperatures between the two towers represents an

offset between the precision sensor at the main tower

and the sonic anemometer temperature recorded at the

west tower. Similarly, the deviation of slope in the

PPFD relationship from 1.0 is most likely indicative of

calibration variation between the sensors. The

systematic difference in net radiation recorded at the

two towers as indicated by the 1.113 slope (Table 1) is

greater than any expected calibration error. However,

the footprint of these instruments is small (Schmid,

1994) and we suspect it is unlikely that these differences

are indicative of differences in the larger footprint

region associated with latent and sensible heat flux

around the towers.

On a half-hourly basis, wind speed and precipitation

are more variable across � 800 m than radiation or

temperature as indicated by the lower R2 values.

Although the slope in the precipitation relationship is

close to 1.0, we found that in summer, rainfall amounts

from individual convective storms may differ by over

50% between the towers.

Half-hourly values of u
*
, H, and LE measured

simultaneously from the two towers are also similar,

but with lower R2 values than temperature or radiation

data (Table 1). The coefficients of determination for u
*

readings made in the day or at night were similar (0.85

vs. 0.83). For heat flux, the deviation in the slope of the

relationship between the two towers (41.0) is matched

by a reciprocal decrease in latent heat flux (slope o1.0)

suggesting that energy balance is maintained by a

different partitioning between H and LE at the two

towers. Comparing heat flux values recorded at the two

towers during winter months when transpiration is

absent because of frozen soil supports this conclusion

(Table 1), as the slope of the relationship is not

significantly different from unity (P5 0.24). If we

assume that transpiration per unit mass foliage is

constant, this difference in energy partitioning (higher

LE recorded by the west tower) can be explained by the

greater canopy biomass around the west tower than the

main tower. Overall energy balance at the two towers

was similar, at the main tower H1LE5 0.93Rn�2.1,

while at the west tower H1 LE5 0.89Rn�7.2 (RMA

regressions).

CO2 fluxes recorded at both towers are similar on

a half-hourly or daily integral basis (Fig. 1). For
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half-hourly CO2-flux data (Table 1), the difference of the

slope from 1.0 is consistent with that of the water vapor

flux, and can possibly be interpreted as resulting from

the greater canopy mass around the west tower than

the main tower. The relationship suggests that forest

around the west tower has a greater rate of daytime

uptake, as well as larger nocturnal losses, than similar

forest around the main tower. Since these factors will

have opposite effects on NEE, the consequence of

the differences between towers on integrated NEE is

not clear.

With u
*
40.25, over 80% of the variance in half-

hourly fluxes in one tower could be accounted for in

data from the other tower. This is significantly more of

the variance than can typically be accounted for by

simple models based on light and temperature

(Goulden et al., 1997; Hollinger et al., 1998). At night,

the strength of the correlation of CO2 fluxes between

the towers depended upon atmospheric mixing. With

good mixing (nocturnal u
*
40.25 at both towers), the

correlation coefficient for CO2 exchange (r) was 0.79

(n5 2409). However, when atmospheric mixing was

poor (e.g. u
*
o0.25 at both towers) or for the less

frequent patchy case (u
*
40.25 at one tower but o0.25

at the other), the correlation of CO2 fluxes was

considerably lower (poor mixing, r5 0.64, n5 2359;

patchy mixing, r5 0.45, n5 558).

The 775 m distance between the towers was chosen

to ensure that the towers are generally integrating

fluxes from different patches of forest (e.g. the towers

are recording data from distinct footprints). When the

wind is blowing along the axis between the towers,

however, overlap may occur. Using the Horst model

described earlier, we analyzed cases when the wind

direction (�y) was along the axis between the towers

(between 130–1401 or 310–3201). Over the 1996–2001

period, the wind blew along this range of wind

directions (e.g. along the axis between the towers)

only 9.4% of the time. Even when the wind did blow

Table 1 Relationship between environmental variables or fluxes measured over the same half-hour time periods at the main and

west towers at Howland in 2000

Variable Slope (SE) Intercept (SE) R2 n

Tair ( 1C) 0.998 (0.001) 1.797 (0.009) 0.998 10 064

PPFD (mmol m�2 s�1) 1.043 (0.002) �0.88 (1.20) 0.993 6833

Rn (W m�2) 1.113 (0.001) 1.76 (0.31) 0.992 10 069

�u (m s�1) 0.871 (0.004) 0.071 (0.024) 0.845 8944

Precipitation (mm) 0.974 (0.005) �0.001 (0.001) 0.876 10 717

u
*

(m s�1) 0.952 (0.004) �0.011 (0.004) 0.844 8944

H (W m�2) 1.107 (0.003) 0.67 (0.36) 0.901 11 724

H (days 1–60 only) 1.011 (0.009) �0.37 (0.66) 0.834 2073

LE (W m�2) 0.849 (0.004) 2.31 (0.30) 0.752 12 242

FCO2 (mmol m�2 s�1) 0.894 (0.004) �0.116 (0.030) 0.830 7309

FCO2 (day) 0.894 (0.006) �0.155 (0.056) 0.785 4901

FCO2 (night) 0.804 (0.010) 0.158 (0.044) 0.623 2408

Main5West� slope1 intercept, RMA method. For CO2 flux, u
*
40.25 at both towers.

RMA, reduced major axis; PPFD, photosynthetically active photon flux density; SE, standard error.
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Fig. 1 Net ecosystem C exchange (NEE) fluxes recorded at two

towers separated by � 775 m are correlated over short term as

well as long term.
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along the line of the towers, the footprint model

suggests that overlap was minimal. Using wind and

stability data from July 2001 as a representative time

period, the model indicates daytime along-axis overlap

of o1.5% and nocturnal footprint overlap of o15%. We

are thus obtaining similar fluxes from both towers

because different patches of forest are responding

similarly, not because the two towers are measuring

the same patch of forest.

For air temperature (Fig. 2a), data from the two

towers were highly correlated (coherence 40.95) for all

frequencies o10�4 Hz (about 3 h). However, high-

frequency fluctuations were less tightly correlated

between the towers than lower frequency fluctuations.

For PPFD (Fig. 2a), the between-tower coherence is

essentially unity for frequencies o � 6� 10�5 Hz (about

4.5 h), drops to 0.7–0.8 for frequencies between � 6� 10�5

and � 2� 10�4 Hz (4.5–1.5 h) and decreases further

at higher frequencies. The coherence spectra of air

temperature and PPFD can be understood by

considering the spatial scale of the different factors

affecting these power spectra. The diurnal motion of

the sun and passage of frontal systems are coherent

across hundreds of kilometers and both strongly

influence air temperature and PPFD at frequencies

lower than � 10�5 s (1 to many days). The afternoon

development of fair weather clouds or clearing of

morning fog occurs at a somewhat higher frequency

(� 10�5 to � 10�4 s; less than a day but greater than a

few hours). The spatial scale of these changes is also

large (many 10’s of km). Variation of air temperature and

PPFD at the highest frequencies is associated with

shadows produced by wind-driven cumulus clouds

(O’Brien, 1987). Because the size of these clouds is

similar in magnitude to the distance between the towers,

coherency between towers at higher frequencies is

reduced. Coherence at higher frequencies is also more

sensitive to the timing of the measurements. If one

datalogger ends a half-hour time period 2 min ahead of

another, they will share only 87% of the data record.

Variations in CO2 concentration are also coherent

across the 775 m separating the towers at a range of

frequencies. Coherence is near unity for diurnal

(� 10�5 Hz) fluctuations and remains high up to � 4�
10�4 Hz (3 h scale). The relatively high between-tower

coherence in CO2 concentration over the shorter time

period is probably driven by the coherent changes in

PPFD across the region, the dynamics of the boundary

layer, and the efficient turbulent mixing of the

atmosphere. We hypothesize that regionwide changes

in PPFD drive changes in NEE that affect regionwide

CO2 concentration. This interpretation is supported by

the dip in CO2 coherence at � 2.3� 10�5 Hz (12 h),

which results from nocturnal values being less

correlated than daytime values (Fig. 2a).

The coherence spectrum of heat flux measurements

made simultaneously at both towers (Fig. 2b) is very

similar to that of PPFD measurements, illustrating the

direct link between incoming radiation and heat flux.

For CO2 flux, the coherence spectrum indicates high

values for frequencies o � 1.16� 10�5 Hz (41 day), a

dip between � 2.3� 10�5 and 5� 10�5 Hz (6–12 h),

moderate values between 5� 10�5 and 1.8� 10�4 Hz

(1.5–6 h) and a loss of coherence above � 1.8� 10�4 Hz

(o1.5 h). The CO2-flux coherence spectrum (Fig. 2b) is

similar to the PPFD spectrum combined with the

reduction around 2.5� 10�5 Hz seen in the CO2 concen-

tration spectrum. We interpret this as indicating that

most of the time CO2 flux is regulated by relatively

large-scale variations in PPFD but that at night small-

scale differences in transport become important.

The CO2-flux coherence seen in the short-term (7

days) analysis is maintained over the course of a season

and several years (Figs 1 and 3). Remarkably, on an
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Fig. 2 (a) Coherence spectra for environmental variables

recorded by systems on two towers separated by � 775 m

show that fluctuations down to several hours are highly

correlated. (b) Similar analysis for heat and carbon dioxide

(CO2) fluxes indicate that even relatively high-frequency flux

variations are correlated.
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annual basis, NEE observed at the two towers differed

on average by less than 6% (Fig. 3). An analysis of

variance (Table 2) indicates that the temporal (year-to-

year) variability is much greater than the spatial

(between-tower) variability.

Recovering model parameters from flux data

To explore how well model parameters could be

recovered from flux data, we fit half-hourly daytime

(PPFD45mmol m�2 s�1) NEE data to a simple model of

PPFD on a monthly basis using light data from the

main tower and independent flux data from each tower.

A nonlinear least-squares approach (CoHort Software,

2002) was used with data from March to November in

1999–2001 and a simple three-parameter model con-

sisting of the Michaelis–Menten relationship describing

saturating enzyme kinetics with a constant rate of

respiration:

NEE ¼ PmaxI=ðI þ KmÞ þ Rd; ð2Þ
where I is the incident PPFD, Pmax is the maximum rate

of CO2 uptake, Km is the PPFD at which NEE5 0.5Pmax

and Rd is the nocturnal (dark) respiration. We use this

as a simple example to compare results from the

independent (two tower) data streams. We evaluate a

slightly more complicated model later.

For these data, the independent recovery of surface

flux model parameters from each tower’s data record

was robust. All of the model parameters (Pmax, Km, Rd)

derived on a monthly basis from one tower were highly

correlated with those derived from the other tower (for

Pmax, r5 0.98; Km, r5 0.71; Rd, r5 0.98; in each case

Po0.001). The mean differences in model parameters

calculated as (Main�West)/Main were remarkably

small. For Pmax, Km, and Rd the mean (� 95%

confidence interval) differences in monthly model

parameters derived from the two towers were

9.4 � 4.1%, 13.0 � 8.7%, and 4.1 � 8.7%, respectively.

The differences between Pmax and Km coefficients

derived from the main and west towers were small

but significantly different from zero whereas the Rd

values were not significantly different. Because Pmax

and Km are not completely independent (see next

section), we compared gross ecosystem exchange (here

GEE5PmaxI/(I1Km)) at a PPFD of 1000mmol m�2 s�1

as well as Rd derived from the two towers (Fig. 4).

When evaluated at 1000 mmol m�2 s�1, models derived

from each tower on a monthly basis yielded GEE values

that were not significantly different (difference of

3.6 � 5.6%, mean � 95% confidence interval).

Table 2 Analysis of variance of interannual and between-

tower net ecosystem C exchange (NEE)

Source

Degrees of

freedom

Sum of

squares F-value P

Year 2 13 571 89.2 0.011

Tower 1 148 1.9 0.30

Error 2 152
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Fig. 3 Interannual variability of net ecosystem C exchange

(NEE) at Howland is greater than the spatial variability

observed by two towers in similar forest separated by � 775 m.
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Fig. 4 Modeled GEE and nocturnal respiration obtained from

simple models parameterized by independent data obtained

from separate flux towers in similar forest.
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These small relative differences in monthly para-

meter values obtained from the separate tower data sets

suggest that the much larger seasonal and interannual

variations seen in model parameters recovered from

flux data (Fig. 4) are indicative of real ecological

responses and differences. Using a three-way ANOVA

to partition the variance in the model parameters

between months, towers, and years, the general pat-

terns are similar for GEE (evaluated at 1000 mmol

m�2 s�1 PPFD) and Rd. Most of the variation in this

analysis is associated with seasonal changes, account-

ing for 91% of the variance in both of these parameters.

The ‘year�month’ term, meaning differences between

the same monthly values in different years (e.g.

interannual variability in seasonal changes) accounts

for about one-half (GEE) and two-thirds (Rd) of the

remaining variance. For GEE, differences between

‘towers’ and ‘years’ account for about 14% and 6%,

respectively, of the remaining variance while for Rd, the

values are about 4% and 16%, respectively. For both

GEE and Rd, the ‘tower� year’ term is also significant

and can be seen in Fig. 4 as the offset between the

towers that occurs in 2000 but not 1999.

Using data from two towers to estimate uncertainty in
flux data

ML methods can be used to provide unbiased estimates

of model parameters from experimental data (Beving-

ton, 1969). In the case where sample measurement error

is independent, normally distributed, and with a

constant (identical) standard deviation for all points,

normal least squares provides the ML estimate of the

fitted parameters. Generally, flux researchers have

implicitly made these assumptions and obtained model

parameters with linear or nonlinear least-squares

techniques (for a notable exception, see van Wijk &

Bouten, 2002). Aside from convenience, the main reason

for making these assumptions is lack of information

about measurement error in flux data. Published data

relating to flux measurement error (error magnitude,

variation with environmental conditions, and statistical

distribution) are generally not available. With the two

towers at Howland, however, we have independent

and simultaneous measures of CO2 flux from which we

can derive uncertainty estimates for fluxes from a single

tower. We have shown already that the mean difference

between simultaneous flux values from the two towers

is very close to zero, assuming that the error from both

towers contributes equally to the error in the difference,

the uncertainty from one tower (expressed as a

standard deviation) is simply

s ¼ sdifferenceffiffiffi
2

p ; ð3Þ

where sdifference is the standard deviation of the

difference between the towers over some block of time

or conditions (PPFD, wind, etc.). Using this approach,

the uncertainty in one-tower half-hourly CO2-flux

measurements, expressed as a standard deviation,

increases from an average of 0.7 mmol m�2 s�1 in winter

(January–March) to 2.86mmol m�2 s�1 in summer (July–

September).

Contrary to least-squares assumptions, the uncer-

tainty is not constant, but varies with the season.

Further analysis (Fig. 5) shows that uncertainty is an

increasing function of the absolute value of the flux and

a decreasing function of wind speed. The finding that

uncertainty declines with increasing wind speed is

significant but not surprising as it suggests that

uncertainty in flux data is directly related to the

turbulent regime.

Our findings can be used with ML methods (Press,

1993) to improve parameter estimates derived from flux

data. In Fig. 6a, for example, we use ML methods with
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Fig. 5 Uncertainty expressed as a standard deviation of flux

measurement error derived from the difference in measurements

in two nearby towers. (a) Standard deviation (s) of data binned

according to half-hourly net ecosystem C exchange (NEE) for all

of 2000 (n5 11 365). (b) Standard deviation (s) of data binned

according to wind speed for 2000 (n5 11 365).
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constant uncertainty (s fixed) and with uncertainty that

changes with wind speed to obtain two sets of Pmax and

Km parameter estimates of three-parameter photosynth-

esis models (Eqn (2)) of daytime NEE data over 5

different months in 1996. Obtaining an estimate of

measurement uncertainty allows us to also apply

Monte Carlo methods to obtain estimates of parameter

uncertainty. In Fig. 6, we use uncertainty that varies

with wind speed in a Monte Carlo analysis to generate

1000 other realizations of the ‘measurement’ data each

month that yield a range of model parameter values.

The analysis shows that model parameter Pmax is highly

correlated with parameter Km (r ranging from �0.85 in

July to �0.95 in August), which means that we cannot

specify independent uncertainties for these parameters

(Fig. 6a). Because Pmax and Km are tightly correlated, we

follow van Wijk & Bouten (2002) and consider the

single variable Pmax/Km (5 e, the light-use efficiency)

(Fig. 6b). The correlation between this parameter and

Rd is low (ranging from �0.12 in April to �0.36 in July).

This analysis shows that our monthly parameter

estimates for April–July are all significantly different
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Fig. 6 Maximum likelihood (ML) estimates of parameter values for simple models of photosynthesis ðP ¼ PmaxI=ðI þ KmÞ þ RdÞ and

respiration ðR ¼ Ae�E0=ðT�T0ÞÞ. The open circles represent the best fit obtained using a constant uncertainty (equivalent to that obtained

via least squares) and the open triangles represent the ML estimate based on uncertainty decreasing with wind speed according to Fig.

5b. The small dots populate the 90% confidence space and were obtained by Monte Carlo simulations. (a) Simultaneous variation in Pmax

and Km parameters calculated from monthly daytime flux data in 1996. The slopes in the monthly relationships indicate that Pmax and

Km are strongly correlated (e.g. r5 0.85 for June). (b) Pmax/Km (e) vs. Rd for monthly daytime flux data in 1996. August values are shown

in gray to help distinguish overlapping data. (c) Simultaneous parameter values for Monte Carlo simulations of the Lloyd & Taylor

(1994) respiration model based on 1996 nocturnal flux data. As before, the least-squares solution is indicated by an open circle and ML

solution (based on uncertainty decreasing with wind speed) indicated by an open triangle.
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(o5% overlap of the monthly parameter ‘clouds’) but

that August parameter values are not significantly

different from those in June. Furthermore, our Monte

Carlo simulations show that the ‘optimum’ parameter

values calculated with least-squares assumptions lie

well within the 90-percentile cloud of points calculated

for the ML estimates and are thus acceptable. For a

commonly used respiration model driven by soil

temperature (see Eqn (4)), we find that least-squares

estimates of parameter values using 1996 nocturnal

data when u
*
40.25 m s�1 are also satisfactory when

compared to ML estimates (Fig. 6c). For this model, we

again found that there were a number of parameter sets

that acceptably fit the observed data.

Estimating model parameters from flux data to predict
NEE

Parameter values for ecosystem carbon exchange

models have typically come from a variety of short-

term laboratory and field experiments and might

historically have been characterized as ‘data poor’.

This is in direct contrast to the quantity of data

available from flux sites. Here we establish parameter

values for a simple model of NEE based on our first

year’s (1996) data and use it with environmental data

from subsequent years to predict NEE in 1997–2002.

Deviations between model results and recorded data

provide insight into other significant (nonmodeled)

variables and begin to answer questions about how

well we can actually predict ecosystem responses to

interannual climate variability. We chose a minimally

complex six-parameter model to fit to 1996 data. First,

we fit a three-parameter model based on soil tempera-

ture at 5 cm to nocturnal flux data (under well-mixed

nocturnal conditions when u
*
40.25 m s�1) to estimate

ecosystem respiration, Reco. We then used this model in

the daytime to estimate GEE (5NEE�Reco) and

estimated GEE as another three-parameter model, in

this case the product of a rectangular hyperbola (Eqn

(2) without the Rd term) in PPFD and a normalized

parabolic temperature response. This model was fit

with nonlinear least-squares techniques as described

previously.

For ecosystem respiration, we used the three-para-

meter exponential relationship of Lloyd & Taylor (1994)

that generally provides a good fit to soil respiration

data:

R ¼ Ae�E0=ðT�T0Þ; ð4Þ

where R is respiration, A is a scaling factor (maximum

rate), E0 is a temperature (K) that affects the shape of

the curve, and T0 is a temperature between 0 K and T.

An advantage of this relation is that it is sigmoidal and

thus better behaved than a simple exponential beyond

the domain of parameterization.

Our complete model is driven by the incident PPFD

(I), air and soil temperatures (Tair and Tsoil) and contains

parameters for the maximum rate of photosynthesis

(Pmax), photosynthetic half-saturation constant (Km),

normalized parabolic temperature response with an

intercept of 0 (a), and respiration parameters (A, Ea, and

T0) as described previously:

NEE ¼ PmaxI

I þ Km

�a2Tair

4

�
þ aT2

air

�
þ Ae�Ea=ðTsoil�T0Þ: ð5Þ

To account for winter inhibition on photosynthesis, if

Tair or Tsoil o0 1C then only respiration is calculated.

The least-squares fit of the respiration model (Eqn (4))

to 1996 nocturnal half-hourly data (Fig. 7) was good

(R25 0.55, root mean square error (RMSE)5

1.25 mmol m�2 s�1) with integrated (annual sum) mod-

eled respiration about 12 g C m�2 (2.7%) less than the

measured 1996 value. Model coefficients were

A5 231.0mmol m�2 s�1, E05 113.4 K, and T05 255.9 K

(Fig. 6c). During the daytime, the model fit (Eqn (5))

was also good (R25 0.66, RMSE5 3.30 mmol m�2 s�1)

with the modeled annual daytime sum of carbon

uptake 5.5% below measured values. The coefficient

values were physiologically reasonable with Pmax5

�22.4 mmol m�2 s�1, Km5 324 mmol photons m�2 s�1,

and a photosynthetic temperature optima of 25.8 1C.

The modeled annual NEE for 1996 of �136.2 g C m�2 is

� 14% below the observed value of �157.6 g C m�2.

However, an examination of Fig. 7 shows that in 1996

net uptake began sooner than predicted, was over-

predicted by the model in early spring (JD 110–140),

and somewhat under-predicted in summer (JD 180–

270). Analysis of the residuals in the fit to 1996 data

confirmed that the largest amount of the remaining
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Fig. 7 Comparison of measured (gray symbols) and modeled

(dark symbols) half-hourly net ecosystem C exchange (NEE)

data in 1996. The modeled data do not adequately capture the

seasonal variation in maximum daily uptake.
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variance ( � 10% of nocturnal and 15% of daytime

residuals) was associated with the JD, suggesting that

seasonal changes in the ecosystem state influenced

parameter values. For example, a model with a Pmax

that increased and then decreased over the season (see

Fig. 6a) would have provided a better fit to the data

than the current model. Other factors excluded from the

model such as daytime saturation deficit or wind

direction were less important, being associated with

o5% of the residual variance.

Using the parameter values established from the 1996

flux data and half-hourly meteorological data from

subsequent years, we estimate mean annual NEE over

the 1997–2002 period of �175.5 � 34.9 g C m�2 yr�1

(mean and standard deviation based on a u
*

threshold

of 0.25 m s�1), which compares well with the ‘mea-

sured’ mean of �174 � 46 g C m�2 yr�1 (Table 3). (We

note here that ‘measured’ NEE and respiration consist

of a combination of measured and modeled (filled) data

and that GEE is derived from subtracting modeled

daytime respiration from NEE.) Closer inspection (Fig.

8) reveals a more complicated picture. Neither modeled

annual respiration, GEE, nor NEE are significantly

correlated with their ‘measured’ counterparts over the

1996–2002 period (respiration, r5 0.45, P5 0.32; GEE,

r5 0.46, P5 0.30; NEE, r5 0.06, P5 0.91); our model

has failed to adequately predict C exchange at this time

scale. Despite the poor fit between annual model

estimates based on 1996 parameters and ‘measured’

values, some patterns are visible in the data. For

respiration, all values are under-predicted with the

error more severe in years after 1997. The large jump in

measured respiration in 1998 was ecosystem behavior

not captured by the model. Interestingly, a record ice-

storm struck the site in January of 1998 felling many

smaller standing dead trees and breaking branches.

This input of coarse and fine woody debris early in 1998

to the soil pool would be consistent with the observed

increase in respiration. For GEE, the model also under-

predicts although this is at least in part a consequence

of the under-prediction of respiration. Measured and

modeled GEE values are correlated with the exception

of 2000, when measured C uptake was substantially

above the modeled value. The cause of such a spike

above predicted values is not readily apparent.

Statistical analysis of variability in NEE

Statistical analysis of multiyear data sets provides

another approach for understanding interannual varia-

bility in C exchange analysis. In this case, the goal may

be to determine whether there are relationships

between C exchange variables and readily available

Table 3 Components of ecosystem carbon exchange at the

Howland site

Year NEE

Reco

(night)

Reco

(day) GEE

1996 �158 (�16, 1 3) 441 605 �1203

1997 �153 (�32, 1 22) 471 635 �1259

1998 �131 (�23, 1 5) 541 709 �1381

1999 �178 (�16, 1 4) 523 680 �1382

2000 �271 (�16, 1 20) 503 676 �1449

2001 �175 (�25, 1 23) 540 726 �1442

2002 �154 (�18, 1 15) 481 647 �1282

Mean �174 500 665 �1339

Standard

deviation

46 38 42 94

All values in units of g C m�2 yr�1. Nominal NEE values are

calculated based on nocturnal data when u
*
40.25 m s�1, with

bracketed values indicating the NEE range calculated with

u
*
40.20 and u

*
40.30 m s�1. Other parameters are calculated

based on u
*
40.25 m s�1.

NEE, net ecosystem C exchange.
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meteorological data, or whether there are time depen-

dencies in certain processes. As an example of the latter,

Barford et al. (2001) carried out a lag-correlation

analysis of monthly Harvard Forest data and found

that anomalously high rates of summer C uptake were

correlated with high respiration rates in the preceding

January and February. We use the same general

approach of relating monthly C exchange anomalies

to monthly climate anomalies.

At the Howland forest, the relationship between

monthly temperature anomalies and NEE anomalies

changes through the year (Fig. 9a). In January and

February, positive temperature anomalies are correlated

with greater respiration (positive NEE anomaly, there-

fore correlation coefficients 40) but by the beginning of

the growing season (March and April) anomalously

high temperatures are strongly correlated with anom-

alously high C uptake (negative NEE anomaly, ro0).

The relationship between anomalously high tempera-

tures and greater C uptake is also seen at the end of the

growing season (November and December for the

evergreen Howland forest). During summer, however,

anomalously high temperatures are related to lower

rates of C uptake (positive NEE anomaly) and the

correlation coefficients are greater than zero. For the

months of April, August, and September, the individual

correlation coefficients are significant at the 10% level,

with Po0.005 for the collective probability that high

temperatures are correlated with enhanced C uptake at

the beginning and end of growing season. Over

summer months, the collective probability of a correla-

tion between anomalously high temperatures and

reduced C uptake is also o0.005.

In contrast to the strong correlation of temperature

and NEE anomalies, we observed no significant

relationship between PPFD and NEE anomalies or

between precipitation and NEE anomalies (Fig. 9b).

This is somewhat curious given the strong half-hourly

or daily relationship between PPFD and NEE. Similarly,

Maine observed record-setting drought conditions in

the summer of 2001, yet there is no relationship

between summer precipitation anomalies and NEE.

One possible explanation for the weak relationships

between these variables and NEE is the correlated

nature of the climate anomalies themselves (Fig. 10). In

winter, clear sunny weather is associated with lower

temperatures (ro0) while the opposite is true during

the spring and summer. Not surprisingly, we observe

an inverse correlation between PPFD and precipitation;

anomalously wet months receive anomalously low

levels of PPFD. In both cases, factors that by themselves

have opposite effects on NEE (e.g. higher summer

temperature and higher PPFD) are correlated, reducing

the influence of the single variable.

Another reason for a lack of strong correlation

between precipitation anomalies and NEE anomalies

may be because in addition to the immediate impact of

cloudiness, precipitation influences plant growth ulti-

mately through soil moisture, which depends upon a

variety of factors, including previous conditions. Using

the soil water balance model BROOK90 (Federer et al.,

2003), we found a significant, nonlinear relationship

between soil moisture and summer NEE anomalies

(Fig. 11). When soil moisture levels were too high or too

low, net C uptake was less than at intermediate levels of

soil moisture.
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Fig. 9 (a) Correlation coefficients of air temperature and net

ecosystem C exchange (NEE) flux anomalies by month.

Anomalously large CO2 uptake is seen for spring and late fall

months that are warmer than normal. Reduced CO2 uptake is

seen in the late summer when temperatures are warmer than

normal. The dashed line represents the threshold for correlation

coefficients (n5 7) that are significant at P5 0.10. (b) Correlation

coefficients of photosynthetically active photon flux density

(PPFD) and NEE flux anomalies (squares) and precipitation and

NEE flux anomalies (solid triangles) by month.
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Discussion

Comparison with other sites

Howland forest’s long-term average NEE of ��174 g

C m�2 yr�1 is somewhat lower than the average

reported across the EUROFLUX sites of

�270 g C m�2 yr�1 (Janssens et al., 2001) but in the range

of values reported for other coniferous forest (see e.g.

Carrara et al., 2003). Mean Howland GEE and total

ecosystem respiration at �1339 and 1165 g C m�2 yr�1,

respectively, are close to the mean EUROFLUX values of

�1380 and 1100 g C m�2 yr�1 (Table 2, Janssens et al., 2001).

Annual net ecosystem exchange at the Howland

forest varies by over 100%, ranging over the 1996–2002

period between �131 and �271 g C m�2 yr�1 (Fig. 3,

Table 3). This high level of interannual NEE variability

appears to be common in other coniferous and

deciduous forests (Goulden et al., 1996a; 1998; Lindroth

et al., 1998; Lee et al., 1999; Aubinet et al., 2002; Carrara

et al., 2003) and should not be surprising given that it

represents the difference between two much larger

gross fluxes each controlled by somewhat different

factors.

In previous work, observed interannual variability of

forest C exchange has been related to springtime

temperatures (Goulden et al., 1996a; Black et al., 2000),

summer drought (Goulden et al., 1996a), summer light

levels (Goulden et al., 1996a; Aubinet et al., 2002), or

length of growing season (Goulden et al., 1996a; Carrara

et al., 2003). Only recently (Aubinet et al., 2002; Carrara

et al., 2003) have climatic conditions been statistically

related to variations in NEE. Here we have clearly

demonstrated the relationship between anomalously

warm spring months (and to a lesser extent anom-

alously warm autumn months) and enhanced C uptake.

Summertime relations are more complicated and reflect

the negative impact of high temperature and drought

on NEE as well as the positive impact of PPFD.

An important result from analysis of the long-term

record from the deciduous Harvard Forest (Barford

et al., 2001) is that anomalously high winter respiration

rates were found to correlate with higher respiration

rates the following summer. The authors hypothesized

that winter snow cover significantly influenced rates of

decomposition over many months. The authors also

found that winter respiration anomalies were corre-

lated with subsequent summer NEE uptake anomalies;

higher rates of winter respiration were thus correlated

with increased nocturnal respiration and daytime

uptake. We performed a similar lag-correlation analysis

of the Howland data (Fig. 12) but obtained different

results. First, we did observe the strong serial auto-

correlation between winter and early spring respiration

(Fig. 12a) seen by Barford et al. (2001). However,

summer month respiration rates were not correlated

with previous winter respiration. Instead, autumn

respiration rates at Howland tended to be inversely

correlated with respiration rates from the previous

winter. Litter input to the forest floor at Howland is
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F O R E S T – A T M O S P H E R E C O 2 E X C H A N G E 1701

r 2004 Blackwell Publishing Ltd, Global Change Biology, 10, 1689–1706



more uniform than in a deciduous forest such as that

investigated by the Harvard group. We speculate that at

Howland and other coniferous forests, unusually high

or low respiration rates early in the year will regulate

the quantity of litter substrate leading to the opposite

behavior later in the same year.

Also unlike Harvard forest, at Howland we found no

relationship between winter respiration anomalies and

subsequent summer NEE anomalies (Fig. 12b). To

further explore the causes of NEE anomalies, we

carried out additional lag-correlation analyses. We

hypothesize that variability in ecological factors such

as leaf area index or foliage nutrient status are likely to

persist for several months and thus similarly influence

NEE for several successive months; such variation in

ecosystem state should be clearly visible in the lag-

correlation structure. Results of these analyses are

conflicting. There was no significant relationship

between monthly respiration anomalies or NEE anoma-

lies and NEE anomalies 1 month later over the whole

data set (respiration : lagged NEE, r5 0.11, P5 0.32;

NEE : lagged NEE, r5�0.077, P5 0.49). Examining the

lag correlation by year, however, revealed that in both

1998 and 1999 monthly NEE anomalies were inversely

(ro0) correlated with those of the preceding month.

Such an inverse behavior (also seen in Fig. 12b) is

difficult to explain via ecological mechanisms. How-

ever, climatic fluctuations may show such patterns and

we conclude that the absence of strong positive lag

correlations in monthly NEE anomalies implies that

these anomalies resulted more from climatic than

ecological factors.

Our two-tower comparison found that fluxes mea-

sured from similar but distinct patches of forest were

correlated at time scales ranging from hours to several

years. Granier et al. (2002) compared fluxes from two

European beech stands separated by � 900 km. Except

for short-term differences (1–5 days) the temporal

variation of NEE followed similar patterns at both

beech sites. Differences in rainfall distribution within a

year induced different degrees of water stress at both

sites and accounted for some variation in annual NEE.

When we attempted to derive parameter values for

simple physiological process models from half-hourly

flux data, independent data from separate towers

provided similar parameter estimates. This suggests

that flux data can be used to parameterize simple (or

not so simple) models of C exchange. However,

parameter values for a simple model developed in the

first year of measurement could not predict future

variation of the large gross photosynthetic and respira-

tory fluxes with sufficient accuracy to make useful

estimates of future NEE. It appears from these results

(e.g. Fig. 8) that parameter values in this type of model

may need to vary between years as well as during the

growing season (Wang et al., 2003). Our earlier analysis

of model parameters (Figs 4 and 6) shows just such

variability. Why should model parameters change

among or within years? The model evaluated here

combines simple ‘big-leaf’ photosynthesis with total

ecosystem respiration; key parameters are photosyn-

thetic and respiratory capacities (Pmax and A in Eqn (5)).

Photosynthetic capacity is a combination of the amount

of foliage, how it is displayed, and leaf biochemistry,

while respiratory capacity represents a combination of

auto- and heterotrophic pools. With such a simple

structure, modest intra- or interannual variation in

model parameters could result from a variety of

physiological and ecological factors. Given the diffi-

culty of predicting a small difference between the large

photosynthetic and respiratory fluxes, such simple

models appear to be of limited prognostic value

and the challenge becomes one of determining what
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Fig. 12 Correlation analysis of January (square) or February

(triangle) ecosystem respiration and subsequent month mean

respiration (a) or net ecosystem C exchange (NEE) (b). Unlike

Barford et al. (2001) we found no relationship between winter

respiration and subsequent summer respiration or NEE.
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drives seasonal and interannual variation in parameter

values.

The model discussed here may also be deficient

because it is missing some other factor(s) that, if

included, would allow the other parameters to remain

more nearly constant across years while simultaneously

leading to more accurate model predictions. The

analysis of monthly NEE anomalies suggests that

summer drought may be one such factor worth

investigating.

Conclusions

The strong correlation observed between the two

towers at Howland leads us to conclude that the

seasonal and interannual variations observed at flux

sites are real manifestations of interactions between

ecosystem processes and environmental drivers. Simi-

larly, data from the two towers suggest that values of

model parameters fit from flux data using least-squares

techniques are robust and (relatively) precise. The two-

tower system provides direct estimates of flux uncer-

tainty that has been used to find model parameter

values having the ML of fitting the observed data.

Monte Carlo techniques produced additional likely

parameter sets of simple models of photosynthesis and

respiration, and analysis indicates that certain para-

meters are highly correlated. Use of flux data and the

ML approach to extract information on the physiologi-

cal processes of photosynthesis and respiration will

doubtless prove valuable in future ecosystem carbon

cycle studies.

An important result emerging from our two-tower

comparison is that since climatic conditions are

generally coherent across some hundreds of kilometers,

regional C exchange, at least within a vegetation type, is

also probably strongly coherent. This provides support

to the idea that climatic influences on vegetation can

result in regional-scale signals of surface–atmosphere

CO2 exchange (Goulden et al., 1996a; Granier et al.,

2002).

Our analysis of interannual variability indicates what

several of these regional-scale signals might be. Warmer

spring temperatures, identified as a potential source of

NEE variability in a boreal deciduous forest (Black et al.,

2000), are significantly correlated with enhanced CO2

uptake at this subboreal coniferous forest. A similar but

weaker effect on NEE was seen for anomalously warm

late autumn temperatures. By contrast, we found that

anomalously warm months at the end of summer were

significantly associated with anomalously low rates of

C uptake. There was no significant relationship

between light or precipitation anomalies and NEE

anomalies. However, we did find that summer NEE

anomalies were significantly related to soil moisture

and that summer C uptake was reduced when soils

were either too wet or too dry.

A simple, physiological model fit from flux data and

driven by half-hourly values of light, air temperature,

and soil temperature provided reasonable estimates of

respiration, photosynthesis, and NEE for the year in

which it was parameterized. However, when driven by

subsequent year environmental conditions, this model

provided no utility for predicting variations in C

exchange. To properly predict C exchange we suggest

that somewhat more complicated models utilizing

seasonal variations in photosynthetic capacity and

perhaps various C pools will be necessary. This lack

of utility applies mostly to predictions of NEE, and

results from this quantity being the difference of two

large gross fluxes that were modeled independently.
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Appendix: Analysis of u
*

threshold and atmospheric

stability on nocturnal respiration

The nocturnal (half-hour time periods when the sun is

below the horizon and the PPFD o5mmol m�2 s�1)

atmosphere at Howland is generally stable. Because the

degree of stability affects flux transport, we classified

atmospheric stability based on the Monin–Obukhov

length, L (m), calculated after Panofsky & Dutton (1984)

using

L ¼
�1u3

�rcpTair

kgH ð1 þ ð0:07=bÞÞ ; ðA1Þ

where u
*

is the friction velocity, r is the air density, cp is

the specific heat of air at constant pressure, Tair is air

temperature (K), k is the von Karman constant (5 0.41),

g is the acceleration because of gravity, H is the sensible

heat, and b is the Bowen ratio. We used the following

classifications; very unstable (class 1), �40oLo0,

moderately unstable (class 2), –200oLo�40, slightly

unstable (class 3), Lo�200, slightly stable (class 4),

L4220, moderately stable (class 5), 40oLo220, and

very stable (class 6), 0oLo40. Over the 7 years of

measurement, more than 90% of the nocturnal half-

hour time periods were classified as ‘stable’ (class 4–6)

whereas only 28% of daytime periods were classified

‘stable’ (Fig. 13a). For nocturnal conditions character-

ized by a narrow temperature range, the measured CO2

flux varies significantly with stability class. For exam-

ple, for summer nights when 15 1CoTairo18 1C, eco-

system CO2 efflux varies by stability class from �0.68 to

6.45mmol m�2 s�1 (Table 4 and Fig. 13c), a negative

respiration here suggesting nocturnal CO2 uptake.

Stability and u
*

are related via Eqn (A1) (see also Table

4), and researchers have typically used an empirically

determined minimum u
*

value to exclude conditions

with poor transport. The daytime and night-time

frequency distributions of u
*

at Howland (Fig. 13b)

are significantly different (w2 test, Poo0.01) with low
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Fig. 13 (a) Frequency of occurrence of atmospheric stability

classes, and (b) friction velocity (u
*
) thresholds, by day and night

at the Howland forest. The nocturnal atmosphere at Howland is

characterized by stable conditions and low u
*

values. (c)

Nocturnal carbon dioxide (CO2) flux for 15 1CoTairo18 1C.

The square symbols (� 95% confidence intervals) represent

0.05 m s�1 u
*

classes, and the lines on the right side of the figure

are the means of the six stability classes. The light gray circles

(� 95% confidence intervals) indicate mean flux values if the u
*

during the preceding half-hour was o0.2 m s�1. Flux values are

relatively constant with u
*
40.25 and similar to values obtained

for slightly or moderately stable conditions.
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u
*

conditions much more common in the night than

day. Fully half of all nocturnal time periods are

characterized by a u
*
o0.25 m s�1 while the daytime

median u
*

is 0.52 m s�1.

Examining nocturnal respiration (the sum of eddy

flux and storage flux) as a function of u
*

at night over a

narrow temperature range (15 1CoTairo18 1C), there

appears to be a threshold value of about 0.25 m s�1,

above which mean nocturnal respiration is relatively

constant (Fig. 13c). A stability class criteria (accepting

data when stability is class 4 or 5) at Howland yields a

nocturnal respiration value that is similar to that

obtained with a u
*

threshold of 0.25 m s�1 (Fig. 13c;

6.13 � 0.19 vs. 6.23 � 0.19mmol m�2 s�1, mean and 95%

confidence intervals). One caution with using u
*

thresholds is the risk of setting a threshold too high.

At Howland, we found that there can be transient

storage of CO2 in the canopy airspace not tracked by

the conventionally measured storage flux (5 integral of

half-hourly CO2 change in the air column below the

instrumentation) and that anomalously high nocturnal

efflux can occur when time periods with abundant

turbulence (u
*
40.25 m s�1) followed more quiescent

periods (Fig. 13c). The specific criteria or threshold used

for accepting or rejecting data during nocturnal periods

has an effect on the annual estimate of respiration (Fig.

14) and thus NEE. We find that on an annual basis, a

criteria of stability class 4 or 5 provides an estimate of

nocturnal respiration similar to that obtained with a

u
*
40.2 m s�1. Based on these and the preceding results,

we use nocturnal data from half-hour time periods

when u
*

exceeds 0.25 m s�1 for our nominal estimates of

NEE, but because the exact threshold is vague, we

bracket our estimates of NEE with similar calculations

using u
*

thresholds of 0.20 and 0.30 m s�1.

Table 4 Relationship between nocturnal stability class, u
*
, and ecosystem respiration

Stability class Respiration (s) u
*

(s) n Frequency

(1) Very unstable �0.68 (6.09) 0.091 (0.069) 57 0.018

(2) Unstable 0.83 (7.16) 0.176 (0.082) 50 0.016

(3) Slightly unstable 5.41 (4.23) 0.348 (0.152) 136 0.044

(4) Slightly stable 6.45 (4.02) 0.481 (0.219) 621 0.199

(5) Stable 5.97 (4.13) 0.283 (0.105) 1066 0.341

(6) Very stable 3.18 (2.63) 0.135 (0.059) 1192 0.381

All data 4.77 (4.09) 0.263 (0.180) 3122 1

Data are restricted to half-hour periods when 15 1CoTairo18 1C.
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Fig. 14 (a) Annual estimates of nocturnal respiration as a

function of u
*

threshold for accepting data (only first 4 years

shown for clarity). Estimates are relatively constant for u
*
40.25.

The crosses indicate annual nocturnal respiration estimate using

an alternative acceptance criteria of stability classe 4 or 5. (b)

Relative sample size (open circles) and squared correlation

coefficient of respiration model fit to nocturnal data (closed

circles) as a function of u
*

threshold.
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