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Abstract

Habitat heterogeneity has long been recognized as a fundamental variable indicative of species diversity, in terms of both richness and
abundance. Satellite remote sensing data sets can be useful for quantifying habitat heterogeneity across a range of spatial scales. Past remote
sensing analyses of species diversity have largely been limited to correlative studies based on the use of vegetation indices or derived land cover
maps. A relatively new form of laser remote sensing (lidar) provides another means to acquire information on habitat heterogeneity. Here we
examine the efficacy of lidar metrics of canopy structural diversity as predictors of bird species richness in the temperate forests of Maryland,
USA. Canopy height, topography and the vertical distribution of canopy elements were derived from lidar imagery of the Patuxent National
Wildlife Refuge and compared to bird survey data collected at referenced grid locations. The canopy vertical distribution information was
consistently found to be the strongest predictor of species richness, and this was predicted best when stratified into guilds dominated by forest,
scrub, suburban and wetland species. Similar lidar variables were selected as primary predictors across guilds. Generalized linear and additive
models, as well as binary hierarchical regression trees produced similar results. The lidar metrics were also consistently better predictors than
traditional remotely sensed variables such as canopy cover, indicating that lidar provides a valuable resource for biodiversity research applications.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The form of the relationship between species richness and
environmental variables is known to be dependent on the scale
and taxonomic group of interest (Hawkins et al., 2003;
Mittelbach et al., 2001). At local scales, the influence of
climate is thought to be a lesser influence on richness patterns
than competition, predation and habitat variables such as patch
area, connectivity, vegetation type, productivity, and land use
(Currie et al., 1999; Rosenzweig, 2002; Turner, 2004). Local
species richness (within-community alpha diversity) has long
been known to be influenced by habitat heterogeneity in-
cluding, in the case of birds, vegetation cover and density
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(Cam et al., 2000; Trzcinski et al., 1999), fragmentation and
isolation effects (Boulinier et al., 2001; Donovan & Flather,
2002; Villard et al., 1999), land management and anthropo-
genic disturbance (Allen & O'Connor, 2000; Berg, 1997), and
foliage height diversity (MacArthur, 1964) among other
factors. Habitat heterogeneity is, however, often complex and
difficult to measure in situ — a proverbial case of not being
able to see the forest for the trees.

Remote sensing has improved our ability to characterize
habitat heterogeneity across a range of spatial scales (Avery &
Haines-Young, 1990; Kerr & Ostrovsky, 2003; Nagendra &
Gadgil, 1999; Turner et al., 2003). There is now a growing
body of literature analyzing remote sensing imagery and
derived vegetation maps as predictors of species richness
patterns (Fairbanks & McGwire, 2004; Gould, 2000; Hurlbert
& Haskell, 2003; Johnson et al., 1998). Similar image data
products are used in predicting range distributions with multi-
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dimensional habitat suitability models (Ferrier, 2002; Guisan &
Thuiller, 2005). Radar remote sensing has potential for
acquiring information on canopy structure in three dimensions,
including some vertical properties of habitat important for
many (not just arboreal) life forms (e.g. Bergen et al., in press).
Radar imagery has been used, for example, to assess canopy
structure in relation to Australian bird species habitat use
(Imhoff et al., 1997), but radar is subject to a range of
distortions that may limit its practical utility to a wide range of
end-users.

A relatively new form of remote sensing provides another
means to acquire information on three-dimensional habitat
heterogeneity. Light detection and ranging (Lidar) is based on
the use of laser light emitted from a source and reflected back to
a sensor as it intercepts objects in its path (Dubayah et al., 2000;
Lefsky et al., 2002). As the reflected light is detected at the
sensor it is digitized, creating a record of returns that are a
function of the distance between the sensor and the intercepted
object. This entire stream of reflected laser returns is referred to
as a waveform. Subcanopy topography, canopy height, basal
area, stem diameter, canopy height profiles, canopy cover and
biomass have all been successfully derived from large-footprint
lidar waveform data in a variety of forest types (Drake et al.,
2002; Harding et al., 2001; Hofton et al., 2002; Nelson et al.,
2003).

In this paper, we explored the utility of lidar to estimate
habitat metrics associated with bird species richness and abun-
Fig. 1. Patuxent National Wildlife Refuge study area in Maryland, USA. Bird survey
elevations derived from lidar data. The lower elevation blue areas in the image includ
shot locations (dots) within a bird observation area (circle). Note the variable density o
area.
dance in the temperate forests of Maryland, where a unique
gridded data set of bird observations had been compiled. Our
objectives were: (i) to map habitat metrics using lidar, (ii) assess
the utility of the metrics for predicting bird species richness, (iii)
compare the lidar-derived predictors with other metrics derived
from more traditional remote sensing imagery. A secondary
objective was to assess the relative utility of different statistical
techniques for analyzing the results, including traditional linear
regression, general additive models, and binary hierarchical
splitting algorithms (decision trees).

2. Study area and data sets

The Patuxent National Wildlife Refuge (PWNR), located in
central Maryland (eastern United States), encompasses 5315 ha
surrounding the Patuxent and Little Patuxent Rivers (Fig. 1). It
was established in 1936 as the only national wildlife refuge for
the expressed purpose of supporting wildlife research, most of
which is conducted by the Biological Resources Division of the
US Geological Survey (www.pwrc.usgs.gov). Onsite USGS-
BRD offices house the North American Amphibian Monitoring
Program and the widely recognized national Breeding Bird
Survey (BBS). The PWNR study site is sufficiently constrained
geographically such that factors other than habitat which may
potentially influence diversity patterns (e.g., climate and his-
tory) were relatively invariant over the period of bird obser-
vations (described below).
locations of 100 m radius are shown as circles overlaid on an image of surface
e branches of the Patuxent river. Also shown (lower right) are the individual lidar
f lidar shots in the image, which resulted from multiple flight lines over the study
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2.1. Bird observations

Avian population data were collected throughout the PNWR
in June of 1996 and 1997 by USGS-BRD personnel following
the methods described by Ralph et al. (1995). A grid of 266
survey points, spaced at 400 m intervals, was established within
the refuge (Fig. 1). At each survey point the abundance of
individual bird species encompassed within a 100 m-radius
circle about the sampling point was recorded for 5 min using a
combination of audio and visual observations. A total of 5042
individuals representing 88 species of birds were observed at
the sampling stations within the PNWR and were separated into
6 different guilds based on their respective habitats. These
included guild descriptions widely used in the BBS. More
specific guild descriptors, such as nesting height (canopy versus
ground) and type (cavity versus open cup), were considered too
general in terms of our assessment of habitat heterogeneity.

Total species richness and abundance were calculated for
each ∼30,000 m2 survey cell. Forest birds dominated the study
area, comprising 31 (35%) of the species and 3128 (62%) of the
individuals observed (Table 1). The most common species
observed was the red-eyed vireo (Vireo griseus), with 479
individuals observed throughout the survey period. Abundance
was calculated as the total number of individuals of a species
observed within each survey cell, and species richness as the
total number of species observed. The abundance and richness
of bird species per survey cell ranged from 3 to 113, and from 2
to 27, respectively. Mean abundance and richness were 19.0 and
12.2, respectively. In addition, the observational data were
stratified by habitat preference, or avian guild (forest, open-
forest, semi-open forest, scrub, suburban and wetland), and the
portion of total richness accounted for by each guild. Thus,
there were 8 species diversity metrics associated with each
survey location: total abundance, total species richness, and 6
per-guild species richness values (Table 1). For the analyses that
follow we did not further consider abundance due to the time
mismatch between the bird and lidar observations, nor did we
analyze the semi-open forest species owing to the generalized
habitat preferences of this guild (which included two species of
vulture as well as the red-tailed hawk, great horned owl, yellow-
shafted flicker, eastern kingbird and brown-headed cowbird).
Although two other guilds (open forest and wetland) had only
slightly more species, they contained more typical habitat
specialists including, in the case of the open forest guild, the
Table 1
Bird species richness and abundance stratified by habitat preference guild

Guild Species
richness

% of total
richness

Abundance % of total
abundance

Forest 31 35 3128 62
Scrub 18 20 710 14
Suburban 15 17 875 17
Wetland 9 10 126 2
Open forest 8 9 83 2
Semi-open
forest

7 8 120 2

Total 88 100 5042 100
eastern phoebe, eastern meadowlark, eastern bluebird, Amer-
ican kestrel, killdeer and three species of swallow. Wetland
species included the red-winged blackbird and belted kingfisher
as well as a variety of ducks, gulls, geese and herons.

2.2. Lidar metrics

We used lidar measurements acquired with the Laser
Vegetation Imaging Sensor (LVIS) over the PNWR in August
of 2003. The LVIS instrument is an imaging laser altimeter,
designed and developed at NASA's Goddard Space Flight
Center (Blair et al., 1999). It has a 7° field of view within which
sampling “footprint” sizes can be varied depending on, among
other factors, the altitude at which the instrument is flown.
Waveforms are converted to units of distance by accounting for
the time elapsed between the initial laser pulse and the return.
Geolocation was accomplished by collecting position and
directional data at the time of each pulse, to which the ground
footprint was referenced post-flight (see Fig. 1).

Full waveform lidar data of the PNWR was acquired at night
under clear sky conditions using LVIS from an altitude of 7 km
above ground level and a nominal 12 m footprint. A number of
different products were derived from the waveform data in-
cluding ground elevation (Fig. 1), canopy height (CH), the
height of median energy (HOME), and the height at which 25
and 75% of the cumulative waveform energy was recorded
(Fig. 2). Each of these variables were calculated in reference to
the ground return, thus accurate determination of the ground
surface is a crucial step in the processing of the data products.
Identification of the ground and canopy returns is carried out by
an automated algorithm which reduces noise within waveform
and then locates the first increase above a mean noise level,
designated as the initial canopy return, and the center of the last
Gaussian pulse, designated as the ground return. The CH
product was derived as the difference in height between the
initial canopy return and the ground return. HOME was cal-
culated by locating the median of the entire waveform, including
both canopy and ground return energies, and computing the
distance between this location and the ground return. A similar
technique was used to calculate 25% and 75% energy return
heights. We also derived a normalized ratio between the CH and
HOME products, which provided an index of the vertical dis-
tribution of intercepted canopy elements (biomass) ranging
between 0 and 1. We refer to this as the Vertical Distribution
Ratio; VDR=[CH−HOME] /CH. Areas with a dense canopy
and sparse understory tend to exhibit a low VDR due to the
relatively short distance between CH and HOME. Areas with a
more even vertical distribution of biomass exhibit larger VDR's
(closer to 1).

For each of the lidar products described above, the location
of each point corresponds to an individual lidar shot and as-
sociated waveform. For visualization purposes, we created
images of each of the ground elevation, CH, HOME, VDR and
other returned energy products using a spatial interpolation
scheme. The images were processed for the entire area en-
compassing the PNWR boundaries (Fig. 2), but all numerical
analyses relative to the bird observations that follow were based



Fig. 2. Lidar image products of the PNWR and surrounding environs depicting vegetation canopy heights and the vertical distribution ratio (VDR, see text). Note the
areas occupied by some of the taller forest trees in the canopy height image are within the Patuxent river corridors, visible in Fig. 1. The cross shaped area in the lower
right is a light aircraft runway. The lower two images are optical (Landsat ETM) vegetation index products derived for mid-summer (left) and for the difference
between summer and leaf-off conditions (right).
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on the use of the lidar waveform products (not the interpolated
images).

2.3. Optical imagery

In addition to the lidar variables, described above, we pro-
cessed optical remote sensing imagery from the Landsat series of
satellites and analysed those in relation to the bird observation
data set. Rather than considering land cover type, which is
relatively invariant across the PNWC, we analyzed spectral
vegetation indices derived from two cloud-free Landsat En-
hanced Thematic Mapper (ETM) images acquired during both
leaf-on and leaf-off conditions. Two derived vegetation index
products were examined: leaf-on normalized difference vegeta-
tion index ([infrared−visible] / [infrared+visible]) (NDVI), and
seasonal NDVI change.
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The Landsat ETM scenes (path/row 15/33), acquired on 2
August 2001 and 24 March 2000, were calibrated to spectral
radiances and then converted to top-of-atmosphere (TOA) re-
flectances using in-band spectral irradiances and a solar geo-
metry model to correct for Earth–Sun distances and solar zenith
angle variations (Goetz, 1997). The images were then geograph-
ically referenced while also correcting for topographic distortion
(i.e., orthorectification). NDVI images were calculated from the
referenced TOA reflectances, and the two scenes were differ-
enced in order to calculate the image of seasonal NDVI change
(Fig. 2). In this way we were able to consider the seasonality of
vegetation cover and density. Most of the PNWR was forested
(∼80%) but it was not possible to discriminate between forest
type classes beyond deciduous versus evergreen habit (Goetz
et al., 2004). These distinctions had no utility for analyzing bird
species richness patterns, but they did allow us to analyze some
of the lidar products by these general forest cover types.

3. Statistical models

Bird survey cell boundaries were intersected with the lidar
(LVIS) and optical (ETM) image products (Table 2) using a
geographic information system, and statistical summaries of the
data falling within the boundaries of each cell were computed for
all predictor variables (Fig. 1) using the R statistical package (R
Development Core Team, 2005). In addition, we calculated
horizontal spatial variance within the cells for each of the pre-
dictors, as well as minimum andmaximum values of each optical
variable in order to better account for seasonal changes in
vegetation and to increase the potential utility of these data sets.

To visualize the general trends between response and predictor
variables, the distribution of each predictor was examined in
relation to each response variable, e.g., mean canopy height was
plotted with forest species richness, and so on. Four statistical
techniques were then used to examine the relationships between
avian species diversity and canopy habitat heterogeneity metrics
derived from both lidar and optical data sets: Akaike's Infor-
mation Criteria (AIC), stepwise multiple linear regession (MLR),
generalized additive models (GAM), and regression trees. AIC
was used to identify the relative importance of predictor variables
among all possible sets of predictors for a given response variable
(i.e., species richness), where the best performing predictors were
identified by the lowest AIC scores. MLRwas then used to assess
Table 2
Response and predictor variables, with the latter separated into habitat metrics
derived from optical and lidar remote sensing data sets

Response variable (sample size) Lidar predictors Optical predictors

Total richness (266) Canopy height NDVI
Forest species richness (263) Canopy height σ NDVI σ
Scrub species richness (191) HOME NDVI min, max
Suburban species richness (231) HOME σ ΔNDVI
Wetland species richness (45) VDR ΔNDVI σ
Open forest species richness (31) VDR σ ΔNDVI min, max

Elevation

The sample size for each response variable is the total number of survey cells at
which the species was observed, of 266 possible locations. σ indicates spatial
variability of the variable, and Δ indicates change.
linear trends between predictor and response variables. MLR is
the most common and straightforward statistical method of as-
sessing relationships between variables, but is subject to a range
of assumptions such as normal error distributions, as well as
limitations due to co-linearity of predictor variables that can result
in inflated estimates of explained variance. We assessed co-lin-
earity, and also examined the influence of spatial autocorrelation
on variable selection using Moran's-I correlograms.

GAMs and regression trees were used to better account for
potential non-linear trends between the response and predictor
variables, and to minimize the influence of co-linearity among
predictor variables (e.g. Guisan et al., 2002). GAMs require
fewer assumptions of data distributions and error structures,
assuming only that functions are additive and components can
be smoothed by local fitting to subsets of the data. Smoothing
parameters were automatically selected based on the effective
degrees of freedom and a generalized cross validation criterion
in R. Regression tree analysis is a technique for partitioning data
based on a series of hierarchical binary splits of the predictor
variables, forming a tree structure that terminates in nodes
associated with discrete ranges in the response variable (Brei-
man, 2001). Regression trees are non-parametric, where data
partitioning at each split minimizes the sum of the squared
deviations from the mean in the partitioned groups, thus re-
ducing the residual variance at each successive split. We used a
boosting technique in the regression tree models, in which the
population was randomly sampled repeatedly to effectively
bootstrap the results based on cross-validated explained var-
iance. Pruning the tree results was unnecessary because the
sample sizes and number of splits were relatively small for a
regression tree approach. The terminal nodes in our regression
tree analysis were ranges of bird species richness.

Using these four approaches, the total and the per-guild species
richness weremodeled using a selected set of significant predictor
variables (of the suite listed in Table 2). For each statistical
approach, response variables were modeled using: (1) lidar
predictors only, (2) optical predictors only, and (3) both lidar and
optical variables. This allowed us to identify the most significant
predictor variables from lidar and optical derived data sets and to
quantify their relative contribution to the total explained variance.

Both the MLR and GAMs were run using a k-fold cross-
validated forward stepwise selection procedure. Data selection,
model training, and model testing were carried out in an
iterative manner proportional to the sample size of the data. For
each iteration a unique random selection of 75% of the data was
used for model selection and training, and a unique random
selection of 25% of the data were used for model testing. Using
the training data, each response variable was modeled based on
a single predictor (using MLR or GAMs) and these single
variable models were tested using the withheld data. After all
iterations, the predictor that explained the greatest amount of
variation in the test data (based on the mean coefficient of
determination) was selected for inclusion in the model. This
process was repeated for each remaining response variable, at
each step using the withheld data for cross validation, until no
remaining predictor explained significantly more (N1%) of the
variation in the response variable.
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4. Results

The lidar metrics varied between land cover types, as mapped
using multi-temporal Landsat imagery. VDR was relatively
smaller in evergreen than deciduous forest and higher in forested
wetland areas, indicating a more even vertical distribution of
biomass in the former and less mid-canopy and understory in the
latter. The bird species richness observations showed systematic
trends with the various habitat metrics, but also showed
substantial variability across the range of habitat properties
(Fig. 3). Total richness increased with VDR, for example, but
displayed increased between-class variability at higher VDR
values, partly due to the smaller sample sizes associated with
these higher values. Total richness tended to be somewhat higher
at canopy heights below 20 m since species richness of the forest
bird guild was smaller than the other guilds combined (Table 1).
Conversely, total abundance of forest birds was greater than the
other guilds, thus canopy height and total abundance were
positively correlated (not shown). Between-class total richness
was also more variable for canopy heights below 20 m due to
relatively smaller sample sizes in those height classes.

Forest bird species richness increased systematically with
canopy height (Fig. 3c), but varied substantially within height
classes (e.g., areas with canopy heights between 18–20 m had a
median species richness of 7.5 with interquartile ranges of 6 to
10 species). Scrub species showed a marked drop in richness
when median canopy height exceeded 9 m (Fig. 3d). Other
Fig. 3. Boxplots showing the range of response variable (species richness) values rela
species richness, (d) scrub species richness. Each box shows the median (horizontal lin
each binned range within the predictor variables. The width of the boxes is proporti
associations between individual predictor and response vari-
ables are presented in the statistical analyses that follow.

4.1. Linear models

The tests using Moran's-I correlograms indicated that the only
significant ( pb0.05) spatial autocorrelation was in the forest bird
guild, with a lag distance of approximately 1000 m. Spatial
autocorrelation does not inflate the explained variance term (R2)
but can lead to inflated (artificially large) sample sizes due to non-
independent samples, which may influence significant tests (p-
values) and result in the inclusion of non-significant predictor
variables. The calculatedAkaike InformationCriteria (AIC) scores
identified the most consistently selected predictors. This assess-
ment indicated that the lidar vertical distribution ratio was the most
frequently selected metric among all models with each of the
various response variables (Table 3). Co-linearity among the most
consistently selected predictors, those with rank correlations
greater than ±0.5, revealed potentially redundant habitat metrics,
such as canopy height and HOME, as well as their derivative
spatial variability metrics. The strength of the correlations varied
when stratified by areas frequented by the different bird guilds, and
correlated predictors have clearly different associations with
response variables, thus rather than eliminate these predictors at
the outset based on co-linearity we chose to use the iterative
stepwise forward selection procedure in the MLR models to in-
corporate the most relevant predictors (Table 3). Moreover,
tive to key habitat predictor variables for: (a, b) total species richness, (c) forest
e), quartiles (upper and lower extent of box) and range (dashed vertical lines) for
onal to sample size.



Fig. 4. Total variance in response variables (species richness) explained by
habitat metric predictor variables, as derived from lidar versus optical remote
sensing data sets. All were significant at pb0.01 or better.

Table 3
Significant predictor variables selected using Akaike's Information Criteria,
ordered in the rank selected

Response variable Predictor variables

All predictors
Total richness VDR Elevation HOME σ
Forest species Canopy height Elevation HOME σ
Open forest species VDR HOME σ –
Scrub species HOME VDR σ Elevation
Suburban species VDR NDVI –
Wetland species VDR Elevation VDR σ

Optical predictors only
Total richness NDVI ΔNDVI –
Forest species ΔNDVI – –
Open forest species NDVI – –
Scrub species NDVI min – –
Suburban species NDVI – –
Wetland species NDVI ΔNDVI min –

Corresponding MLR models of explained variance are provided in Fig. 4.
Models based on lidar-only predictors selected the same variables as those using
all predictors, except in 1 of 16 cases (see text).
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because we compared cross-validated models, using 25% of the
data set to test the model developed with 75%, any potential
variance inflation was effectively diminished.

The results of the MLR models for total and guild-specific
richness are summarized in Fig. 4. Species richness was best
predicted when stratified by guild, with different variables
selected as the primary predictors across guilds. Scrub —
secondary growth species proved to be the most robustly pre-
dicted guild, with 45% explained variation in species richness.
As in the AIC analysis, the VDR was selected as the primary
predictor for total species richness, open forest, suburban and
wetland species richness, indicating the importance of vertical
habitat distribution for bird diversity. Similar results held for
total bird abundance, although we do not include those results
here since the bird observations were made in a different year
than the lidar acquisitions and abundance can vary substantially
on an interannual basis owing to factors other than habitat (e.g.
extreme weather events). Canopy height and HOME were
selected as primary predictors of forest and scrub species
richness, respectively, which also fits with expectations of
habitat use for these guilds. No habitat metrics derived from
optical remote sensing variables were selected as either primary,
secondary or tertiary predictors of bird diversity (or abundance),
with the exception of NDVI for suburban guild species richness
(secondary). Note the sample sizes (number of sampling areas
with guild species present) for the wetland and open forest
guilds were small relative to those of the other guilds (Table 2).

Models based solely on optical predictors accounted for
significantly less of the variation in species richness than models
based on lidar predictors (Fig. 4). As with the lidar basedmodels,
species richness was predicted best when stratified by guild. The
model of suburban species richness explained the most vari-
ability (30%) using only optical habitat predictors. The NDVI
was the primary predictor of total species richness, as well as
open forest, suburban and wetland species guilds. Forest and
scrub species richness were predicted best by maximum NDVI,
seasonal NDVI difference, and minimum NDVI, respectively.
Themodels based on optical predictors rarely selectedmore than
a single significant variable and the metrics of spatial variability
were never selected for either NDVI or its seasonality.

Models using both lidar and optical predictors explained no
more of the variation in species richness than those based solely
on the lidar variables (Fig. 4). Conversely, combining lidar with
the optical variables explained an average of 13% more of the
variation than models based on optical predictors alone. In all 6
models using the full suite of predictor variables, lidar variables
were selected as significant predictors of bird species richness in
15 out of 16 cases (the only exception being the selection of
NDVI over the spatial variance of HOME as a secondary
predictor of suburban bird richness). Overall predictive
capability using all variables was best in forest, open-forest
and scrub species richness, and worst in suburban and wetland
species richness.

4.2. Additive and non-parametric models

Use of the generalized additive models did not substantially
improve upon the MLR models, explaining essentially an equal
amount of variation in the response variables. GAMs based
solely on optical predictors showed minor improvement (3%)
over comparable MLR models, but differences using all
variables and lidar-only variables were negligible (b1%). Spe-
cific guild richness models that were most improved using
GAMs included the scrub and open forest species (5.5% and
7.3%, respectively, with all variables included). Both of these
models were significantly improved over MLR (pb0.05). The
primary predictor variables selected by the GAMs differed little
from those selected by the MLR models, with the exception
Open Forest species for which canopy height rather than VDR
was selected as the primary predictor.

Results of the regression tree models of species richness were
also similar to those of the MLR models. Lidar predictors were
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most often selected as the primary variable split, and the species
richness models improved when stratified by guild. Models
employing only lidar variables predicted species richness and
per-guild species richness significantly better than models based
on optical variables alone. The explained variation in the re-
sponse variables accounted for by the regression tree models
were comparable to those of the MLR models, and are therefore
not further reviewed here. Nonetheless, the regression tree
models display the amount of variation explained by the models
within the first or second variable split (Fig. 5a). Note from this
figure that lower canopy heights and areas with less height
Fig. 5. a. Regression tree output of forest bird species richness. The initial binary spli
canopy height, followed hierarchically by splits on the spatial variability in canopy hei
nodes. b. Map of forest bird species richness derived from the regression tree mode
variability contained fewer forest bird species, whereas the
greatest species richness occurred in taller canopy forests oc-
cupying lower elevation (riparian wetland) areas. Although the
apparent R2 value increased following additional splits, the
relative R2 tended to decrease, indicating that any more complex
models would be over-fit. Applying the regression tree model to
the lidar data products allowed us to produce maps of species
richness, subject to the limits of the statistical fits, for areas both
within and outside the PNWC (Fig. 5b). Note the areas outside
the PNWR boundaries tend to have lower forest species richness
values.
t in explained variance (indicated by the vertical spacing between nodes) was on
ght, and ground elevation. Mean species richness is displayed within the terminal
l (Fig. 5a) and the lidar data products (Fig. 2).
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5. Discussion

Predictions of bird species richness at the PNWR using
remotely sensed metrics of habitat heterogeneity, including tree
height diversity and vertical mass distribution estimates, were
moderately skilled in terms of variance explained (Table 2), and
the derived models were robust in that the results were con-
sistent when data were reserved for prediction and then cross-
validated. The best models explained 45% of the variation in
bird species richness, although more typically 30–40% of spe-
cies richness was explained using the statistical models strat-
ified by guild. Lidar metrics of habitat heterogeneity performed
systematically better than those based on optical remote sens-
ing, and fusion of both optical and lidar improved little upon use
of lidar alone. Similar findings have been noted with respect to
predicting spotted owl species presence in the Sierra Nevada of
California (Hyde et al., 2006).

We note that the best predicted bird guilds were those most
easily observed (scrub species) or most frequently observed
(forest guilds), whereas those predicted less well were either
generalists (suburban or semi-open forest species) or highly
restricted in range for areas where vertical habitat dimensionality
was minimal (wetland species). Predicting the presence of hab-
itat specialists would be of interest, particularly for threatened
species conservation, but the bird observation data set used here
were not sufficiently robust to address this topic. Specifically,
issues of detectability would need to be considered, including
repeated observations to detect rare species and to ensure ade-
quate site occupancy characterization (Boulinier et al., 1998;
MacKenzie et al., 2002). Our results indicate that lidar obser-
vations are useful in characterizing interior forest habitats, as
expressed by the VDR, HOME and other lidar metrics, and these
would clearly have utility in identifying habitats suitable to
multi-stage canopy specialists. We are currently exploring this
topic in another study area with extensive, long-term, well doc-
umented bird observations.

Despite the potential benefits of statistical techniques such as
GAMs and regression trees over traditional methods like MLR,
we found little advantage in these approaches for the current
analysis. Part of the limitations we observed may be due to a
failure to adequately incorporate interactions among the pre-
dictors, although we intentionally limited the predictors to those
that could be derived from remote sensing observations (others,
such as climate, were relatively invariant across the study area
extent). Similarly, the regression tree approach was limited in
that the skill of the models did not improve beyond inclusion of
the first few variables, which explained most of the variance
after two or three binary splits. The overall explained variance
was not substantially or systematically improved over the MLR
or GAM approaches. Whereas regression trees are a useful non-
parametric technique for a variety of applications (Breiman,
2001), they typically function best with larger sample sizes than
were available for the current analysis.

These results arise at least partly from the limits of capturing
very local scale habitat variability, particularly where that
variability is constrained relative to the mobility of the organism
of interest. We worked with bird observations because they
were, along with butterflies, the most extensively characterized
species data sets available and, in our case, intensively studied
in a systematic fashion across a regular grid by widely
recognized bird experts (Ralph et al., 1995). Moreover,
mapping species diversity is a difficult proposition even with
extensive field surveys to guide a suite of predictors derived
from various sources, partly due to the detectability of species in
different habitat mosaics (Boulinier et al., 1998; MacKenzie
et al., 2002). As with the results we present here, other alpha
species diversity predictions have performed only moderately
well (R2 values of 50–60%), even over spatial extents broader
than those we examined (e.g., Luoto et al., 2004; Seto et al.,
2004). This was true at the PNWC because of the dominance of
forest vegetation across the site, and the relative horizontal
uniformity of the vegetation. Nonetheless, the lidar habitat
metrics clearly and consistently performed better than those
based on more traditional optical remote sensing because they
were able to characterize the vertical habitat structure
information relevant to bird diversity. Optical data (Landsat in
this case), in contrast, are more sensitive to canopy photosyn-
thetic material and density than vertical structure. Additional
variables that can be derived from lidar, including biomass,
basal area and stem density, may improve habitat heterogeneity
metrics where adequate field data are available to derive
statistical descriptors across the study domain. Other lidar data
sets, such as those available from the Center for LIDAR
Information Coordination and Knowledge (lidar.cr.usgs.gov),
may permit extension of this analysis to additional areas where
adequate biodiversity observations exist.

Predicting species richness requires consideration of factors
other than habitat heterogeneity, even at local scales, including a
combination of temporal changes in environmental conditions
across a given site, the responses of organisms to those envi-
ronmental variations, and the interactions of organisms via both
intra and interspecific competition. The biotic responses to
changes in the availability of resources, often associated with
the frequency and type of disturbances, produce range
variations that may result in species diversity patterns that
vary considerably within a given habitat — despite the best
efforts to characterize habitat heterogeneity. Challenges in
measuring both current species diversity and associated habitat
properties introduce additional uncertainty. Reducing these
uncertainties may produce more robust species diversity models
and, in this light, we believe the advent of lidar remote sensing
has an important role to play in characterizing multi-dimen-
sional habitat heterogeneity. Lidar may ultimately prove most
useful when considered in combination with data sets that
convey information on other aspects of habitat, such as
vegetation type and cover density, as well as temporal variations
in habitat properties.
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