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Abstract. We describe an implementation of the Ecosystem

Demography (ED) concept in the Community Land Model.

The structure of CLM(ED) and the physiological and struc-

tural modifications applied to the CLM are presented. A ma-

jor motivation of this development is to allow the predic-

tion of biome boundaries directly from plant physiological

traits via their competitive interactions. Here we investigate

the performance of the model for an example biome bound-

ary in eastern North America. We explore the sensitivity of

the predicted biome boundaries and ecosystem properties to

the variation of leaf properties using the parameter space de-

fined by the GLOPNET global leaf trait database. Further-

more, we investigate the impact of four sequential alterations

to the structural assumptions in the model governing the rela-

tive carbon economy of deciduous and evergreen plants. The

default assumption is that the costs and benefits of deciduous

vs. evergreen leaf strategies, in terms of carbon assimilation

and expenditure, can reproduce the geographical structure of

biome boundaries and ecosystem functioning. We find some

support for this assumption, but only under particular com-

binations of model traits and structural assumptions. Many

questions remain regarding the preferred methods for de-

ployment of plant trait information in land surface models.

In some cases, plant traits might best be closely linked to

each other, but we also find support for direct linkages to en-

vironmental conditions. We advocate intensified study of the

costs and benefits of plant life history strategies in different

environments and the increased use of parametric and struc-

tural ensembles in the development and analysis of complex

vegetation models.

1 Introduction

The storage of carbon on the land surface, and how the land

surface interacts with the atmosphere, are both determined to

some extent by the distribution of plant types, or ecosystem

composition, across the globe. Ecosystem composition is, at

large scales, determined by past and present climate condi-

tions (Holdridge, 1967; Woodward, 1987). Given projected

changes in climate, the composition of ecosystems may well

be expected to change in the coming decades and centuries

(Cox et al., 2000; Sitch et al., 2003), and thus the carbon

stored on the land is potentially subject to large deviations

from the current state. Additionally, biome shifts such as

woody encroachment in the Arctic with a warmer climate

(Levis et al., 2000; Swann et al., 2010) and greening of the

Sahara with a wetter climate (Levis et al., 2004) significantly

alter climate by changing surface albedo and evapotranspira-

tion (Rogers et al., 2013). Thus, the representation of biome

distribution has emerged as a key new feature of Earth sys-

tem models (ESMs) in recent years (Cox et al., 2000; Levis

et al., 2004; Krinner et al., 2005; Sato et al., 2007).
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Models that simulate the redistribution of plant types in

space and time are collectively referred to as dynamic veg-

etation models or DGVMs (in that vegetation cover is an

emergent or dynamic outcome of the model). Most major cli-

mate models now include some functionality to simulate dy-

namic vegetation (Cox et al., 2000; Levis et al., 2004; Krin-

ner et al., 2005; Friedlingstein et al., 2006; Sato et al., 2007;

Arora et al., 2013). Their inclusion in ESMs, however, can

give rise to large and uncertain feedbacks. For example, the

land surface scheme of the Hadley Centre GCM (MOSES-

TRIFFID, latterly known as JULES) originally predicted the

rapid collapse of the Amazon rainforest in the mid-21st cen-

tury (Cox et al., 2000). Later versions of the same model with

altered vegetation physiology allowed the simulated forest to

persist in the face of increasing temperatures and reducing

rainfall (Huntingford et al., 2013), illustrating the strong sen-

sitivity of vegetation distribution to underlying physiologi-

cal assumptions, which are themselves the subject of debate

(Lloyd and Farquhar, 2008; Atkin et al., 2008). In addition

to this, Sitch et al. (2008) demonstrated that the underlying

assumptions of five alternative DGVMs (all driven with the

same climate scenario) generated extremely divergent out-

comes. In particular, the five models exhibited a tendency to

predict rapid and substantial collapse of forest biomass, but

in markedly different places. For example, the LPJ (Lund-

Potsdam-Jena) model (Sitch et al., 2003) projects reductions

in forest cover for over 50 % of Eurasia, while the TRIFFID

and to a lesser extent the HYLAND, Sheffield DGVM, and

ORCHIDEE models all project declines in forest carbon over

Amazonia. These divergent outcomes may be interpreted as

evidence that the processes that control the extant of forest

biomes are poorly understood by large-scale models.

Two main classes of dynamic vegetation schemes are in

use in the Climate Model Inter-comparison Project (CMIP)

models at present (Friedlingstein et al., 2006, 2014). The

first class, derived from the BIOME and LPJ class of models

(Prentice et al., 1992; Running and Hunt, 1993; Sitch et al.,

2003), deploy the logic of “climate envelopes”, whereby re-

cruitment and survival are only permitted within the pre-

defined climate tolerances for a given plant functional type.

These envelopes represent the physiological tolerances of

the vegetation types to cold, heat and drought, but are typ-

ically derived using the observed distributions of present-

day vegetation and isolated experimental data (Woodward,

1987; Haxeltine and Prentice, 1996; Prentice et al., 2007).

These climatic limits on recruitment and survival operate in

lieu of physiological understanding of the reasons why dif-

ferent types of plants persist in some environments where

others do not. Another class of model is derived from the

Lotka–Volterra representation of competitive ecological pro-

cesses (Cox et al., 1998; Arora and Boer, 2006). The TRIF-

FID model (Cox et al., 1998) specifies a “dominance hierar-

chy” for each pairwise competitive interaction between plant

types that represents the expected outcome of competition

between any two plant types with similar growth rates. Thus,

the distribution of plants is also not a direct function of their

physiological performance or dominance over resources, but

is to some extent determined by pre-defined rules based on

existing vegetation distributions. The CTEM model (Arora

and Boer, 2006; Melton and Arora, 2015) uses a dominance

hierarchy between trees and grasses, and climate envelope

constraints to define the maximum range of its seven nat-

ural plant functional types. Dominance hierarchies can be

understood as a proxy for the outcome of light competition,

and therefore are appropriate where significant differences in

vegetation stature mean that the outcome of competition is

relatively certain, such as competition for light between trees

and grasses.

The science of quantitatively understanding plant biome

boundaries is in its infancy (Moorcroft et al., 2001; Givnish,

2002; Wullschleger et al., 2014; Enquist et al., 2015) and the

use of climate envelopes or dominance hierarchies as a proxy

for understanding plant biome dynamics is, arguably, a prag-

matic approach to a problem of extraordinary complexity. Al-

though it remains a potentially valid means of understanding

plant distributions under altered climates, there is growing

interest in moving towards models that rely on more fun-

damental principles of plant physiology. At the same time,

initiatives to collate information on plant traits and physio-

logical functioning (Wright et al., 2004; Kattge et al., 2011)

along with increases in the sophistication of process repre-

sentation in land surface models (Blyth et al., 2010; Zaehle

and Friend, 2010; Best et al., 2011; Goll et al., 2012; Mc-

Dowell et al., 2013; Oleson et al., 2013) have provided a basis

for advancing plant biome boundary modeling. Many groups

have, therefore, proposed and developed vegetation models

with greater process fidelity (Hurtt et al., 1998; Moorcroft

et al., 2001; Moorcroft, 2006; Medvigy et al., 2009; Scheiter

et al., 2013; van Bodegom et al., 2014; Wullschleger et al.,

2014; Fyllas et al., 2014; Weng et al., 2015), with an aim of

mechanistically predicting plant distribution, from consider-

ations of climate, soil, and fundamental plant physiology and

ecology.

One key argument for using this approach is that the veg-

etation distribution is an emergent property of the system,

and thus can be considered independent of observations of

the location of biome boundaries. This gives rise to the pos-

sibility of hypothesis testing and, in theory, increasing con-

fidence in predictions of future biosphere functionality. Fur-

thermore, while climate envelopes may be diagnosed as the

biome assemblages that emerge in response to the long-term

ecosystem dynamics of a given climate, they may not be

well defined for emerging novel climates, especially given

that some environmental drivers (or aspects of the “climate”,

e.g., CO2 concentration and nitrogen deposition) are chang-

ing simultaneously, and thus all current climates are in a

sense novel. Lastly, bioclimatic relationships are diagnosed

from long-term quasi-steady-state distributions, and so mod-

els that impose these assemblages in response to dynamic

changes may not have realistic transient responses, which are
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likely to be characterized by lags between change in climate

and responses of vegetation, given the persistence of trees

that have lifespans that are long relative to the timescale of

forcing.

Hence, we here introduce and explore a modeling frame-

work for testing hypotheses of vegetation distribution, in-

tegrated into the structure of the Community Earth System

Model (CESM) (Hurrell et al., 2013). The framework is built

around the Ecosystem Demography (ED) concept of Moor-

croft et al. (2001). The Ecosystem Demography model is a

method for scaling the behavior of forest ecosystems by ag-

gregating individual trees into representative “cohorts” based

on their size, plant type and successional status. Here we also

integrate into the model changes introduced by Fisher et al.

(2010), in particular a modified implementation of the per-

fect plasticity approximation (Purves et al., 2008) as well

as the SPITFIRE fire model of Thonicke et al. (2010), the

cold deciduous phenology model of Botta et al. (2000) and

the concept of optimal allocation of leaf biomass (Dewar

et al., 2009; Thomas and Williams, 2014). Many aspects of

plant physiological representation remain poorly constrained

in land surface models in general. Thus, this framework is

proposed as a template for future generations of the Commu-

nity Land Model. We present the full technical description of

the CLM4.5(ED) (Supplement A). While we do not specif-

ically examine model runs coupled to the rest of the Earth

system here, the capacity to do so is inherent in the inclu-

sion of the model within the CLM code that resides inside the

software architecture of the Community Earth System Model

(Hurrell et al., 2013).

For the purposes of this initial demonstration of the

CLM4.5(ED), we concentrate on the main property of the

model that differs from most commonly used dynamic global

vegetation models, which is the capacity to predict distribu-

tions of plants directly from their given physiological traits.

This property can be referred to as “trait-filtering”, and has

been employed in offline land models (Reu et al., 2010;

Pavlick et al., 2013; Verheijen et al., 2013; Fyllas et al., 2014;

Reichstein et al., 2014) and advocated heavily in the vegeta-

tion modeling literature (McGill et al., 2006; Prentice et al.,

2007; Purves and Pacala, 2008; Morin and Thuiller, 2009;

van Bodegom et al., 2012; Boulangeat et al., 2012; Scheiter

et al., 2013; Violle et al., 2014; van Bodegom et al., 2014).

To enable trait-filtering, traits must affect plant growth and

survival. Growth must then affect the acquisition of limiting

resources (in this case via competition for light within the

vertical profile) that must feed back onto growth, survival

and reproduction. Differences in growth, survival and repro-

duction rates must then directly control (in the absence of cli-

mate envelope constraints) the relative distributions of vege-

tation types (and hence also the distribution of their traits).

This model structure thus implies sensitivity to the specific,

quantitative details of how physiological processes are rep-

resented, and heightens the imperative to study the relative

costs and benefits (or economics) of alternative plant life his-

tory strategies (Reich, 2014).

The hypothesis we investigate here is that the distribu-

tion of evergreen and deciduous trees can be predicted from

the relative carbon economy of their leaf habits, meaning

the costs and benefits, in terms of carbon assimilation and

expenditure, of the alternative phenological behaviors. This

idea is intended as an illustration of how one might use this

class of model to test continent-scale hypotheses concern-

ing vegetation distribution, and to raise important discussion

points related to the methods used for such studies. Other

biome boundaries, such as forest–tundra, forest–grassland

and grassland–desert transitions, will be the subject of future

investigations.

2 Model structure and concept

Descriptions of the ED concept exist in the vegetation mod-

eling literature, (Moorcroft et al., 2001; Medvigy et al., 2009;

Fisher et al., 2010), but we reiterate the major develop-

ments here for clarity. In reality, vegetation cover is hetero-

geneous in space for many reasons including soil compo-

sition, climate, microtopography, land use and disturbance

history (Dahlin et al., 2012, 2013). In land surface models,

the variations in exogenous drivers are captured by the repre-

sentation of gridded soil, land use and climate forcing data.

Within a grid cell, some of this exogenous heterogeneity is

by definition ignored (although, in the CLM4.5, some exoge-

nous variation is captured by the representation of lake, ice,

wetland, urban, and managed vegetation tiles). In addition,

much heterogeneity of vegetation composition and structure,

is endogenous, in that it is driven by the ongoing processes

of recovery and disturbance across a landscape, giving rise

to a quasi-random spatial matrix of vegetation at different

stages of recovery. The default CLM4.5 (Oleson et al., 2013),

and the vast majority of land surface models operating in

ESMs, represent variability in natural vegetation via a series

of “tiles”, each of which is occupied by a single plant func-

tional type (but cf. Watanabe et al. (2011)). The tiles have

no physical location within a grid cell, and no concept of

whether they are well mixed or well separated. This method

of representing vegetation does not allow for competition for

light between different plant types, and also does not allow

the representation of recovery from disturbance, a critical

element of ecosystem organization (Moorcroft et al., 2001;

Purves and Pacala, 2008).

2.1 Disturbance-partitioned landscapes

The incorporation of the Ecosystem Demography concept

significantly alters the representation of the land surface in

the CLM. The purpose of the changes is to represent, in a dis-

cretized manner, the disturbance-driven biotic heterogeneity.

In the CLM(ED), the new tiling structure represents the dis-
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turbance history of the ecosystem. Thus, some fraction of the

land surface is characterized as “recently disturbed”, some

fraction has not experienced disturbance for a long time, and

other areas will have intermediate disturbances. Newly dis-

turbed areas are generated periodically and mechanistically

by events such as fire or the falling of large trees. The patch-

work of different stages of succession within a given geo-

graphical area is discretized into a set of similar “disturbance

history class” units. Note that within each of these distur-

bance history classes may exist a variety of plants of differ-

ent types, each of which may have different ages themselves.

This formulation is described next (Moorcroft et al., 2001;

Medvigy et al., 2009; Fisher et al., 2010).

2.2 Cohortized representation of tree populations

Representing the heterogeneity of plants is challenging in

ecosystem models operating the Earth system scale, con-

sidering the variability and myriad physiological attributes,

sizes, and spatial positions of real plant populations. One

way of addressing this heterogeneity is to simulate a forest

of specific individuals, and to monitor their behavior through

time. This is the approach taken by “gap” and individual-

based models (IBMs), e.g., LPJ-GUESS (Smith et al., 2001),

SEIB (Sato et al., 2007) and SORTIE (Uriarte et al., 2009).

Their increased computational requirements mean that these

models typically use a daily time step for gas exchange cal-

culations, while the Community Earth System Model, and

most other ESMs, require gas exchange to be calculated at

30 or 60 min resolution (Lawrence et al., 2011). For the sake

of computational efficiency within this framework, the ED

model takes the approach of grouping this hypothetical popu-

lation of plants into “cohorts”. Cohorts are discrete groups of

plants, which are essentially clones of each other, and are dif-

ferentiated from other cohorts primarily by their plant func-

tional type and size. Each cohort is associated with a number

of identical trees, ncoh (where coh denotes the identification

or index number for a given cohort).

In each disturbance history class, the hypothetical popula-

tion of plants is divided first into discrete plant types consis-

tent with the standard approach to representing plant diver-

sity in large-scale vegetation models. In addition to this, the

ED model also groups plants into numerous size classes, thus

enabling vertical interactions. Cohorts of the same functional

type may co-exist and compete in the same shared space as

different sizes. The exact nature of the size classes emerges

from the cohort fusion routines, discussed in Supplement A.

Importantly, for each plant type/size class combination, the

properties of the cohort’s representative individual plant are

maintained and prognosed (numerically integrated through

time). These properties can be thought of as an average for

the group of plants represented by the cohort. Note that com-

petition for below-ground resources, namely water, remains

affected only by vertical root distribution, and is unaffected

by the introduction of the ED concept into the CLM. All

plants have access to the same water pool, as described in

Supplement A.

Traditional DGVMs (Sitch et al., 2003; Woodward et al.,

2004) prescribe only one single average individual of each

PFT without the use of the cohort concept; thus, the ED

approach represents a compromise in representation of for-

est dynamics between these two approaches. Other “cohor-

tized” forest models exist in the literature, notably, GAP-

PARD (Scherstjanoi et al., 2013, 2014), TREEMIG (Lischke

et al., 2006; Zurbriggen et al., 2014; Nabel et al., 2014), the

PPA model (Purves et al., 2008; Lichstein and Pacala, 2011;

Weng et al., 2015) and later versions of the LPJ-GUESS

model (e.g., Hickler et al., 2008; Pappas et al., 2015), but

few studies (if any) have looked into the comparative merits

and drawbacks of these different approaches.

3 Methods

3.1 The representation of trait diversity

We focus here on the problem of predicting the extent of ev-

ergreen and cold deciduous strategies in temperate regions.

Deciduous and evergreen trees vary most obviously in their

approach to leaf production. Typically, deciduous trees pro-

duce thinner leaves with lower leaf carbon mass per unit area

(Ma, gC m−2), or the inverse of specific leaf area, that only

allow the plant to photosynthesize for the period of the year

when these leaves are viable (Niinemets, 2010), whereas ev-

ergreen leaves typically have more expensive construction

and persist year round. Leaf nitrogen content per unit area

(Narea, g m−2) and productivity also vary with leaf thickness

(Reich et al., 2007), and are thus related to Ma and leaf lifes-

pan (Ll, years). These three properties, Ma, Ll and Narea,

are among the best-quantified leaf traits in existing databases

(Kattge et al., 2011), and together can plausibly define alter-

native leaf construction strategies. Furthermore, at a global

scale, trade-offs exist between these three properties, and it

has been suggested that the existence of such constraints on

parameter space represents a key opportunity to simplify the

representation of vegetation within DGVM models (Reich

et al., 1997; Westoby et al., 2002; Wright et al., 2004; Reich,

2014). To investigate how parameter choice impacts the out-

comes of the model, we use the GLOPNET leaf trait database

(Wright et al., 2004) to define Ma, Ll and Narea. Within

plant functional types, which are defined here as evergreen

vs. deciduous trees and needleleaf vs. broadleaf trees, there

are large variations for all parameters within the database

(Figs. 1 and 2). Thus, there exists a problem of parameter

choice for these three properties. One approach is to sim-

ply use either the mean properties of the data for each plant

type (Reich et al., 2007), or a single linear fit of the relation-

ship between the different variables. This approach, while

compellingly simple, presupposes that the database repre-

sents an appropriate sample, either of the mean of the ex-
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isting plants, or the relationships between the variables. This

is, on account of sampling biases (Wright et al., 2004), quite

unlikely to be the case; as such we take a different approach

that retains the observed spread in the available data. In this

study, we construct PFT-specific three-dimensional covari-

ance matrices (Figs. 1 and 2) that represent our knowledge

of the direction and fidelity of the trade-offs between the

three traits and thus define a set of plausible “proxy species”

within each plant functional type, defined in this case by phe-

nological habit (i.e., evergreen or cold deciduous). We con-

sider all parts of the normally distributed covariance matrix

to be equally likely (since their likelihoods are derived from

the observed data). We then re-sample, from this distribution,

a set of 15 parameter combinations for deciduous broadleaf

(DBT) and 15 for evergreen needleleaf (ENT) trees, using a

multivariate normal distribution sampling routine, the mvn-

rnd function in MatLab (MATLAB, 2012).

Narea values are substantially higher for ENT than for

DBT. Kattge et al. (2009) report the relationship between

photosynthetic capacity Vc,max,25 (µmol m2 s−1) andNarea for

DBT and ENT, and find that ENTs have much lower instan-

taneous nitrogen use efficiency than DBTs, using their coef-

ficients. We thus calculate Vc,max,25 as

Vc,max,25 = 33.79Narea (1)

for DBT, and

Vc,max,25 = 20.72Narea (2)

for ENT. Without this modification, a naïve approach to scal-

ing fromNarea to Vc,max,25 would give ENTs a photosynthetic

capacity 50 % higher than DBTs.

This model parameterization approach only modifies a

small fraction of the total number of the parameters that are

necessary within the CLM(ED) framework (Oleson et al.,

2013) (Supplement A). To increase the tractability of the sim-

ulations and to constrain the changes in parameters between

plant functional types, we kept all of the remaining model pa-

rameters constant. We acknowledge, and indeed emphasize,

that the outcome of the simulations could be altered by modi-

fication of other parts of the model parameter space. Our aim

here is not to derive the “best possible” simulation of biome

boundaries, but more to investigate the consequences of pa-

rameter choice within a relatively small and well-constrained

framework. Few other model parameters have the same den-

sity of observations (Kattge et al., 2011); thus, the scenario

represented by Ma, Ll and Narea is one of the best test cases

for deploying trait data to predict biome boundaries.

3.2 Model setup

To explore the consequences of parameter choice for the fi-

delity of the predicted biome boundaries, we ran a series of

ensemble simulations, each using one of the 15 parameter

combinations resampled from the three-dimensional covari-

ance matrix, as described above and in Table 1. To allow for

Table 1. Parameter combinations for the 15 ensemble members for

leaf lifespan (Ll) in years, leaf mass per area (Ma) in gC m−2 and

area-based nitrogen content (Narea) in g m−2.

Run ID Ll Ma Narea

ENT BDT ENT BDT ENT BDT

1 2.0626 0.3258 516.4 98.7 4.07 2.02

2 2.3824 0.5357 249.2 132.2 2.13 2.19

3 0.7585 0.6427 168.0 70.6 1.66 1.24

4 4.1155 0.1498 362.6 58.4 2.38 1.38

5 1.3678 0.4241 329.8 103.1 3.43 2.05

6 3.1704 0.2994 181.1 47.5 2.26 1.82

7 1.9671 0.2019 609.3 59.8 5.21 1.44

8 2.2025 0.3035 335.8 159.4 3.12 2.87

9 5.3842 0.3222 334.1 47.8 4.88 1.72

10 1.6403 0.3952 264.0 104.0 2.28 2.34

11 3.9932 0.2666 165.3 41.8 0.80 1.13

12 2.7613 0.5384 342.2 95.3 4.19 2.34

13 3.8249 0.4586 444.2 78.2 3.85 0.94

14 1.4697 0.3214 232.5 55.7 0.03 1.25

15 0.6839 0.2761 483.6 62.8 4.96 1.28

direct attribution of biome boundary position to our hypoth-

esis (e.g., that the relative carbon economy of deciduous vs.

evergreen plants can explain their distributions), we assume

here that there are no other differences between the proper-

ties of the ENT and DBT plant types. These simulations were

run five times, using a control and four alternative structural

assumptions described in Sect. 4.4.

Regional model runs were conducted for the eastern

United States. We selected this region on account of the

continent-scale biome boundary shifts evident between phe-

nological habits along the north–south axis of this domain. In

the eastern United States, there is a clear transition from ever-

green vegetation in the north to heavily deciduous-dominated

ecosystems in the mid-latitudes, then back to evergreen in

the southern and subtropical regions. The problem of pa-

rameterization of plant functional type attributes within the

context of structural variants is complex, therefore we inten-

tionally focus on this limited-scope regional problem, to al-

low a more thorough investigation of the properties of the

model. We acknowledge that historical land-use impacts af-

fect this study area, but we both screen out heavily impacted

areas from our analysis and only focus on forested ecosys-

tems, reducing this impact substantially (see the latter sec-

tion on observational constraints). Other clear shifts in phe-

nological habit occur globally, most notably at the rainforest–

savanna biome boundary (DeFries et al., 2000), but method-

ologies for simulating drought-deciduous phenology are not

as well understood as for cold-deciduous phenology (Bau-

dena et al., 2015), and the issue is complicated by interac-

tions with modeled soil and plant hydrology (Dahlin et al.,

2015). Future studies will investigate other biome boundaries

and ultimately the properties of global simulations.

www.geosci-model-dev.net/8/3593/2015/ Geosci. Model Dev., 8, 3593–3619, 2015
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Figure 1. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel) and nitrogen per unit leaf area (lower panel) for

evergreen needleleaf trees, from data reported by Wright et al. (2004). Large circles are from the database, and smaller circles are randomly

chosen points from the resampled normally distributed covariance matrix.

The model is forced with 6-hourly climate drivers derived

from Qian et al. (2006), re-gridded to a 0.9× 1.25◦ resolu-

tion grid and run from 1972 to 2003 for the eastern USA

(90–65◦W, 25–50◦ N). Because of our prioritization of en-

semble experiments to illustrate the dependence of modeled

plant competition on parameter values and model structural

variants, rather than to explore the consequences for the en-

tire (soil, vegetation, atmosphere) carbon cycle, we ran the

models until the vegetation distribution appeared stable. Be-

cause of the absence of a nitrogen cycle in our simulations,

this period was relatively short (i.e., approximately 30 years).

The carbon budget of the represented ecosystems was not

necessarily in balance at this time, but there did not appear to

be a trajectory affecting the ecosystem composition, the out-

put variable of interest. Our other outputs of interest, LAI and

GPP, stabilize well before this time. Each ensemble member

was initialized from bare ground, seeded with equal numbers

of saplings of each plant functional type (ENT and DBT).

3.3 Observational constraints

To evaluate the model predictions, we use the AVHRR vege-

tation continuous fields (VCF) product (DeFries et al., 2000),

which assesses global vegetation patterns in terms of leaf

type (i.e., needleleaf, broadleaf) and phenological habit (i.e.,

evergreen, deciduous). The fraction of vegetation in each

class is determined for each 5 km cell, and the data were re-

gridded to the same 0.9× 1.25◦ model grid. We generate a

metric of average observed evergreen fraction (Feg) for each

grid cell. Furthermore, we also use the MODIS leaf area in-

dex (LAI) product to evaluate model performance across the

simulated domain. Leaf area index is a property often used

to benchmark plant physiology models because it is a critical

determinant of both energy and carbon exchange processes,

despite our imperfect ability to generate LAI products from

canopy greenness indices (Quaife et al., 2004; Pfeifer et al.,

2012; Loew et al., 2014). In this instance, our primary objec-

tive is to predict spatial variation in LAI at a regional scale.

Further studies will be expanded into the use of other metrics

of canopy greenness (e.g., fraction of absorbed PAR – pho-

tosynthetically active radiation), using CLM4.5(ED)’s in-

creased fidelity representation of the canopy structure (Sup-

plement A). Areas with heavy (> 50 %) influence of anthro-

pogenic land-use change, as determined by the CLM sur-

face data sets (Lawrence and Chase, 2010), are masked out

in model–data comparisons, since the model is only rele-

vant to the prediction of natural vegetation LAI. Since the

VCF product only reports values relevant to forest vegeta-

tion cover, it is relevant to test the model predictions against
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Figure 2. Relationships between log leaf mass per unit area and log leaf lifespan (upper panel) and nitrogen per unit leaf area (lower panel)

for cold deciduous broadleaf trees, from data reported by Wright et al. (2004). Large circles are from the database, and smaller circles are

randomly chosen points from the resampled normally distributed covariance matrix.

areas with land-use change because the herbaceous/crop ar-

eas are already screened out. Finally, we also compare model

outputs to the Fluxnet GPP product (Jung et al., 2011; Bonan

et al., 2012), which scales fluxes observed at eddy covari-

ance measurements sites to a globally gridded product using

climate and vegetation drivers. The Fluxnet GPP has previ-

ously been used to validate CLM GPP predictions (Bonan

et al., 2012), and while it relies on data that are sparse for

some regions, errors for this latitude band are relatively low

(Beer et al., 2010).

3.4 Structural variants

Numerous aspects of carbon cycle process representation are

uncertain in land surface models, and, using our mechanistic

modeling framework, these uncertainties can propagate into

predictions of biome distribution. To address a subset of this

uncertainty, we conducted parametric ensembles across a va-

riety of structural assumptions pertaining to the allocation of

carbon resources across evergreen and deciduous trees. We

investigate the importance of assumptions related to model

initialization, which is a notable determinant of final ecosys-

tem state in models with strong positive feedbacks. We also

investigate the depiction of leaf and fine root carbon econ-

omy, taking advantage of new studies that report better con-

straints on these processes than exist in the default model.

The new data pertain to the correlation of leaf respiration

with leaf nitrogen, the turnover of evergreen leaves, and the

turnover rate of fine root matter. The default model setup, de-

scribed in detail in Supplement A, is denoted as the control

(CONT) simulation. The other four structural variants are de-

scribed below.

3.4.1 Variant 1: allocation

The first structural variant relates to carbon allocation (and is

thus denoted as ALLOC). In this variant, we address limita-

tions in the existing CLM(ED) assumptions for leaf carbon

allocation. In the default version of the CLM4.5(ED), using

the assumption described in Fisher et al. (2010), leaf area

index is expressed on a per-tree basis (and ultimately aggre-

gated to calculate average surface LAI). The individual tree

leaf area index is the number of leaf layers within the area

occupied by the tree crown (ltree m2 m−2). ltree is determined

from leaf biomass, (bleaf, g), leaf mass per unit area (Ma,ft,

g m−2 (where ft denotes plant functional type), and the area

occupied by the tree (Acrown, m2) as follows:

ltree =
bleaf

Acrown ·Ma,ft

. (3)
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Maximum target leaf mass is an empirical function of stem

diameter (dbh), adjusted by the wood density ρft (taken from

Moorcroft et al., 2001).

bleaf,max = 0.0419dbh1.56ρ
0.55
ft (4)

bleaf,max is a target maximum biomass that can be adjusted

downwards by the leaf area optimization routines (Supple-

ment A) that ensure that the net assimilation cost of the bot-

tom leaf layer (taking into account construction) does not fall

below zero.

In this form, for a given tree diameter, there is always the

same maximum leaf biomass, irrespective of Ma. Therefore,

initial ltree is inversely proportional to Ma. The ENT and

DBT plants typically have markedly different Ma distribu-

tions (Figs. 1 and 2) and therefore there is a correspondingly

large difference in their maximum potential (and initial) leaf

area index. While the leaf area optimization routines eventu-

ally act to ameliorate this initial difference in LAI between

plant types, the early advantage in productivity obtained by

the deciduous trees can cause them to grow faster to the ex-

tent that they close the canopy and out-compete the evergreen

trees, reinforcing the difference in initial conditions. Asner

et al. (2003) report LAI values for temperate ENTs as at least

equivalent to (6.7± 6.0) if not higher than temperate DBTs

(5.1± 1.8). These observations imply that absolute allocated

leaf biomass for ENTs must, given their higherMa, be higher

than the leaf biomass of DBTs, which is not the case in the

control model.

To overcome this intrinsic model bias, we employ a mod-

ification to the target leaf biomass such that the initial tree

leaf area index remains the same for DBT and ENT regard-

less of the values of specific leaf area. Specifically, the target

leaf biomass is scaled by the quantity Slma as follows:

Slma =
Ma,max

Ma,ft

, (5)

whereMa,max is a reference value, currently set at 300 g m−2.

3.4.2 Variant 2: base rate of respiration

Leaf respiration rates are a critical element of the competitive

interaction between ENT and BDT since a major cost of the

evergreen habit is the maintenance of photosynthetic appara-

tus throughout the unproductive winter season. The second

variant (RESP) pertains to the baseline rate of respiration. In

the control version of the CLM4.5, respiration is a function

of the leaf nitrogen content per unit area Narea. Using this

methodology, the leaf maintenance respiration rate at 25 ◦C

at the top of the canopy lmrtop,25 (gC s−1 m−2) is

lmrtop,25 =Narea · bresp, (6)

where bresp is the baseline rate of respiration per unit Narea,

given by Ryan (1991) as 0.2577 gC gN−1 s−1.

A recent study by Atkin et al. (2015) provides greater con-

straints for the relationship between Narea and lmrtop,25. In

their study, they report different relationships for ENT and

BDT functional types, as follows, for BDT,

log10(lmrtop,25,BDT)= log10(Narea) · 1.134− 0.300, (7)

and for NET,

log10(lmrtop,25,NET)= log10(Narea) · 1.005− 0.346. (8)

The outcome of these log–log relationships, if expressed

in the same base rate units used by Ryan (1991), across

the spread of Narea values used in our ensemble, is

0.452 gC gN−1 s−1 for NET and 0.536 gC gN−1 s−1 for BDT.

We replaced the linear dependence of lmrtop,25 on Narea with

the log–linear functions described above. With this modifi-

cation, the base rate is approximately double that used in the

default model, and the new base rate for ENT is 16 % lower

than that for BDT (when they were identical in the original

model). We denote this model variant as RESP.

3.4.3 Variant 3: leaf lifespan as a function of

temperature

The third structural variant we consider concerns the rate of

evergreen leaf turnover. In the default version of the model,

leaf lifespan is derived from the covariance matrix that re-

lates it toMa andNarea. However, interrogation of the GLOP-

NET database reveals almost no correlation between leaf

lifespan and Ma for NET (R2
= 0.004). Instead, there is

a much stronger correlation with mean annual temperature

(R2
= 0.426, Fig. 3). This relationship was also reported for

a subset of boreal needleleaf evergreen trees by Reich et al.

(2014). The impact of using our default covariance matrix ap-

proach is that “expensive” leaf strategies can be proscribed in

both hot and cold regions. In contrast, the observations sug-

gest that, irrespective of leaf cost, leaves last longer in colder

environments, and that the short-lived, more expensive leaf

habits are confined to hotter areas. In this modification, we

directly employ the relationship between (MAT) and Ll for

evergreen trees. The relationship we extract from the GLOP-

NET data for this purpose is

Ll,ENT =−0.2885MAT+ 7.1069. (9)

As temperature appears to have no significant impact on

Ma or Narea (R2
= 0.046 and 0.02, respectively), and as they

are strongly related to each other (R2
= 0.580), we retain the

covariance matrix approach to define those parameters, in-

dependent of temperature. We also maintain the same maxi-

mum leaf lifespan prediction for the deciduous trees. We de-

note this variant as LL_TEMP. We discuss the implications

of direct prediction of leaf lifespan from climatic drivers fur-

ther in the discussion.
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Figure 3. Relationship between mean annual temperature (◦C) and leaf lifespan (years) derived from the GLOPNET leaf trait database for

evergreen broadleaf trees (yellow), evergreen needleleaf trees (blue), broadleaf deciduous trees (red), and deciduous needleleaf trees (green).

Evergreen broadleaf and deciduous needleleaf tree data are not used in this analysis, but are shown for comparison here.

3.4.4 Variant 4: root lifespan as a function of

temperature

The definition of root turnover rates is subject to extreme

uncertainty in vegetation models, not least because root

turnover rates are intrinsically hard to observe, but also be-

cause root longevity appears to be complex, having been sta-

tistically related to many factors including root order (Joslin

et al., 2006; Guo et al., 2008; McCormack et al., 2012),

depth, diameter, specific root length and wood density (Mc-

Cormack et al., 2012), nitrogen content (Eissenstat et al.,

2000) and temperature (Gill and Jackson, 2000). Arguably,

models that predict root traits from correlated plant physio-

logical properties and environmental conditions are needed

to properly specify this trait, as described in detail by War-

ren et al. (2015). However, to illustrate the sensitivity of the

biome boundary predictions to basic variability in assump-

tions of root turnover, we test both the default assumption

(the turnover rate of the fine root pool is 1.0 yr−1) and a

relationship derived from the analysis of Gill and Jackson

(2000). The Gill metaanalysis found a log–log relationship

between MAT and root tissue turnover (Rl, years), with dif-

ferent coefficients for NET and BDT (with a slightly steeper

decline in Rl with MAT for BDT than for NET). Thus, for

NET

log10(Rl,NET)=−0.053log10(MAT)+ 3.088 (10)

and for BDT

log10(Rl,BDT)=−0.082log10(MAT)+ 3.316. (11)

We denote this model variant as RL_TEMP.

3.5 Model simulations

Our four modifications give rise to a set of 24
= 16 poten-

tial structural combinations. Testing all 16 structural combi-

nations for the 15-member parametric ensemble for the full

eastern United States region is computationally prohibitive.

Consequently, instead of testing all combinations, we add the

structural modifications in one at a time to investigate the

impact of each change in isolation. We therefore compute

five ensembles of alternative structural variants, by adding

the ALLOC, RESP, LL_TEMP and RL_TEMP changes se-

quentially. For each of the five variants, we run the model

for 15 times with parameter values sampled from the space

of Ma, Ll and Narea. The structural variants are labelled i,

ii, iii, iv, and v, and are described in Table 2. We compare

the model output to the observed data using five compari-

son metrics, maximum and mean annual LAI, maximum and
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Table 2. Model run descriptions.

Run ID Allocation Respiration Leaf Root

number model model lifespan lifespan

i CONT CONT CONT CONT

ii ALLOC CONT CONT CONT

iii ALLOC ARESP CONT CONT

iv ALLOC ARESP LLTEMP CONT

v ALLOC ARESP LLTEMP RLTEMP

mean annual GPP, and the single set of evergreen fraction

data available.

We calculate the R2 and root mean square error (RMSE)

of the spatial distribution of each metric. We acknowledge

that there exists a choice of metrics (maximum vs. mini-

mum vs. range, and spatial vs. temporal correspondence),

but also note that subjectivity in the definition of objec-

tive functions is generic to high-dimensional model output

(Abramowitz et al., 2008; Randerson et al., 2009; Blyth et al.,

2011; Abramowitz, 2012; Kelley et al., 2013; Luo et al.,

2012; Schwalm et al., 2013; Anav et al., 2013).

Our analysis is concerned with the costs and benefits, or

carbon economy, of the different leaf strategies. The cost

of leaves is easily calculated as the investment (in terms of

LMA), divided by the lifespan (in terms of LL), giving the

cost in KgC per unit area per year of leaf. The benefits (in

terms of carbon export), on the other hand, are more difficult

to calculate, since they are manifested not only though leaf

Narea and hence photosynthetic capacity, but also by the non-

linear interactions of photosynthetic capacity with environ-

mental drivers (light, CO2, temperature, etc.). Thus, the de-

tailed physiological model is required to generate estimates

of benefit in terms of assimilation, and it is not possible to do

these calculations as a simple offline analysis. Furthermore,

the implementation inside the physiological model includes

the impact of self-shading of leaves lower in the canopy, and

thus the costs and benefits of these strategies are actually only

properly assessed at the canopy scale. To address this point,

we conducted additional model runs that use only one PFT

at a time, using structural variant v. Using these analyses, we

can assess the differences in productivity and leaf area index

of the PFTs in isolation. This removes the direct effects of

light competition and allows interrogation of how the com-

petition and productivity elements of the model combine to

generate the resulting distribution.

4 Results

4.1 Overall model performance

Figures 4, 5 and 6 illustrate the R2, relative RMSE and sum-

mary statistics for each structural variant and parameter com-

bination. Figures 7, 8, 9 and 10 show the simulated evergreen

fraction (Feg) as simulated by the different structural vari-

ants. Figures 11 and 12 show the mean annual LAI and GPP

of the last structural variant (run v), once all of the modifica-

tions have been made. GPP and LAI maps are shown for the

other structural variants in Supplement B.

Figure 4 illustrates that, particularly for Feg and LAI, R2

varies primarily with structural variation, as illustrated by the

horizontal striation. In contrast, variation in RMSE, particu-

larly for GPP, illustrates the dominance of parametric varia-

tion, shown by the vertical striation in the GPP and LAI com-

parisons in Fig. 5. We did not combine the R2 and RMSE

values directly, since calculating their relative weights would

serve to reduce the clarity of the output exposed by using

them both independently.

4.2 Prediction of biome boundaries

In the control simulation (Fig. 7), every parameter combina-

tion produced a near-complete dominance by deciduous veg-

etation, irrespective of the variation in parameters that were

extracted from the leaf trait database. The mean R2 of the

predicted vs. observed Feg across the ensemble (0.04) illus-

trates this lack of predictive skill. Addition of the ALLOC

modifications to initial leaf biomass (Fig. 8) returns signifi-

cant variation in predicted Feg. The model still predicts com-

plete dominance of BDT for some parameter combinations,

but also successful dominance of ENT at high and low lat-

itudes for others. Nonetheless, only three of the simulations

have evergreen cover over 25 % (where the mean for the ob-

servations is 49.2 %). The mean (and max) R2 is 0.13 (0.34),

where “max” is the highest R2 value for any of the 15 para-

metric combinations.

The impact of altering the leaf respiration fluxes to match

the observed relationship with leaf nitrogen and plant func-

tional type had only a slight impact on the overall RMSE and

R2 statistics for the evergreen fraction predictions (maps not

shown on account of their similarity to Fig. 8). Making ev-

ergreen leaf lifespan a PFT-specific function of temperature

(LL_TEMP) has a more profound impact on the competitive

ability of the NET plants at high latitudes (Fig. 9). With this

structural modification, seven of the simulations have ever-

green cover over 25 %, and the mean (and max) R2 increases

to 0.20 (0.34).

The last modification, directly including the PFT-specific

impacts of temperature on fine root turnover, further in-

creases the dominance of evergreen trees in northern lati-

tudes, again slightly increasing the correlation with the ob-

servations. Now nine of the simulations have evergreen cover

> 25 % and the mean (and max) R2 is 0.23 (0.35) (Fig. 10).

In general, it is clear that all versions of the model consid-

ered here display something of a systematic bias towards the

prevalence of deciduous trees using this parameter space.

The impact on RMSE of the sequence of structural modifi-

cations also showed a tendency towards improvement as the

average RMSE of the predicted vs. observed fraction of ev-
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Figure 4. R2 coefficients of the spatial correlation between model output and five different data product metrics. The x axis pertains to

variation in the parametric ensemble, and the y axis pertains to variation in the structural ensemble.

Figure 5. Root mean square error, relative to the mean of the variable, of the spatial correspondence between model output and five different

data product metrics. The x axis pertains to variation in the parametric ensemble, and the y axis pertains to variation in the structural

ensemble.
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Figure 6. Mean values (over the spatial domain) of GPP, LAI and Feg output. The x axis pertains to variation in the parametric ensemble,

and the y axis pertains to variation in the structural ensemble. Units are KgC m−2 year−1 for GPP, m2 m−2 for LAI and fraction cover for

Feg.

ergreen trees dropped from 0.48 (model run i) through 0.41

(ii), 0.41 (iii), 0.37 (iv) and 0.35 (v) (Fig. 5).

4.3 Impacts on leaf area index

The alteration of both model structure and parameters also

had a major impact on the predicted LAI. This is expected,

since all of the modifications and parameters are concerned

with carbon economy, and realized leaf area in the model is

predicted from the vertical location of the lowest leaf layer in

positive annual carbon balance (Supplement A). The increase

in model–data spatial coherence (R2) through the structural

ensemble (from runs i to v) for Feg (see Sect. 5.2) is not

echoed by changes in the R2 of mean annual LAI, which

instead decreases through the ensemble from 0.45 (run i)

through 0.31 (ii), 0.30 (iii), 0.14 (iv) and 0.05 (v). This trend

was not apparent for the R2 of maximum annual LAI (which

varies through 0.42 (i), 0.15 (ii), 0.32 (iii) 0.39 (iv) to 0.38

(v)) (Fig. 4). The model error (RMSE) was also relatively in-

sensitive to changes in the model structure, aside from the

change from run i to run ii, which improved the simulations

(Fig. 5).

The direction of change of the R2 and RMSE statistics

was not consistent due to spatial complexities. Specifically,

the control simulation (run i) systematically underestimated

LAI across the entire domain (Supplement B: Fig. 1) and thus

had a high RMSE. The lack of much spatial structure in LAI

prediction across the geographical domain, however, meant

that it had a relatively good spatial coherence with the LAI

data product, which is also relatively homogenous across the

domain. Increasing allocation to leaf biomass in simulation

ii, and thus increasing LAI overall, intensified the spatial het-

erogeneity of the predictions (Supplement B: Fig. 2) and thus

worsened the R2, but reduced the model error.

Changing the respiratory fluxes in run iii improved the R2

fit to maximum LAI (from 0.15 to 0.32, Fig. 4), potentially on

account of the higher respiration rates at low latitudes acting

to even out the spatial distribution of LAI (Supplement B:

Fig. 3), and in doing so compensated for the decline caused

by the previous modification (illustrating the possibilities of

model equifinality).

Altering the leaf turnover time caused an increase in the

mean LAI (from 2.66 to 3.06) by reducing canopy replace-

ment costs at high latitudes. The model predictions thus

now approach and in some cases overshoot the values ob-

served for high-latitude evergreen forests (3.5–4.5 m2 m−2)

in the data product (Supplement B: Fig. 4). In the simula-

tions where evergreen trees are dominant, it is notable that

their LAI values may be somewhat over-predicted. The final

simulation (v, with the RL_TEMP modification) intensifies

the reduction in tissue turnover demand at high latitudes, and

thus the changes primarily amplify those imposed on LAI

by the LL_TEMP modification. The model now illustrates a

very wide range of potential LAI predictions, dependent on

the parameters chosen to represent the ENT and DBT strate-

gies (Fig. 11). The major systematic bias in the final LAI

predictions is the underestimation in the mid-latitudes of the

domain. The fact that this feature is persistent across the pa-

rameter space sampled (even though there is clearly room for

more detailed parameter optimization) indicates a persistent

structural bias, particularly in the performance of deciduous

broadleaf trees in their higher ranges. This underestimate is

not substantially changed by any of the structural modifica-

tions we deploy here (all of the simulations indicate the same

issue) and does not appear to result from underestimates of

productivity (Fig. 12), potentially implying a deficiency in

carbon allocation.

It is worth noting that the LAI values predicted by the

CLM4.5(ED) algorithm (which assumes leaf area optimized
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Figure 7. Fraction of evergreen trees projected with structural ensemble member i (the control simulation). Panel (a): VCF product estimates

of Feg. Panels (b)–(p) correspond to the 15 different combinations used in the parametric ensemble.

Figure 8. Fraction of evergreen trees projected with structural ensemble member ii (control+ ALLOC variant). VCF product data are shown

in panel (a). Panels (b)–(p) correspond to the 15 different combinations used in the parametric ensemble.
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Figure 9. Fraction of evergreen trees projected with structural ensemble member iv (control + ALLOC + RESP + LL_TEMP variants).

VCF product data are shown in panel (a). Panels (b)–(p) correspond to the 15 different combinations used in the parametric ensemble.

Figure 10. Fraction of evergreen trees projected with structural ensemble member v (control+ALLOC+ RESP+ LL_TEMP+ RL_TEMP

variants). VCF product data are shown in panel (a). Panels (b)–(p) correspond to the 15 different combinations used in the parametric

ensemble.
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Figure 11. Mean annual leaf area index (m2 m−2) projected with structural ensemble member v (control + ALLOC + RESP + LL_TEMP

+ RL_TEMP variants). MODIS LAI product data are shown in panel (a). Panels (b)–(p) correspond to the 15 different combinations used

in the parametric ensemble.

for net canopy carbon gain) all appear to be in the range

bracketed by the observations. Historically, the CLM4.0 and

CLM4.5 models have suffered from issues related to the

chronic overestimation of LAI (Lawrence et al., 2011; Dahlin

et al., 2015). We suggest that limiting the production of leaf

layers in negative carbon might ameliorate this issue.

4.4 Impacts on GPP

The correlation coefficients for GPP are consistently higher

than those for LAI or for biome boundary prediction, illus-

trating that simulations of GPP appear generally more ro-

bust than either those for plant carbon allocation (Kauwe

et al., 2014) or for biome boundary prediction (Supplement

B: Figs. 5 and 6). The spatial correlations of maximum an-

nual GPP flux are relatively insensitive to the effects of struc-

tural variation (R2 values are 0.48 (i), 0.49 (ii), 0.49 (iii), 0.44

(iv) and 0.44 (v) (Fig. 4)). The R2 values for mean annual

GPP flux are more sensitive to model structure (0.63 (i), 0.58

(ii), 0.58 (iii), 0.44 (iv) and 0.39 (v)) and, in common with

the LAI predictions, decline through the ensemble.

Notably, the overall mean and RMSE values for GPP are

much more sensitive to variations in parameter values than

to changes in model structure (Figs. 5 and 6), reflecting the

impact of the parametric variation on the overall productivity,

both directly via the impact of Narea on Vc,max, and indirectly

via impacts of Ll and Ma on leaf area index.

GPP predictions using parameter setting no. 13 have a no-

tably low R2 for mean and maximum GPP (which is actually

negative for runs ii though v, resulting from the residual sum

of squares being larger than the total). This simulation has

the highest fractions of evergreen vegetation, and generates

very high LAI and thus high GPP values in the far north of

the domain (Supplement B: Figs. 7 and 8). As a result, in

the latter parts of the structural ensemble, no. 13 has a no-

tably poor spatial correspondence to the observations (which

show a decline in GPP with latitude). Several of the other

high evergreen cover ensemble members (nos. 5, 12, 15), all

of which have an unrealistically high LAI in the northern ar-

eas, also show a degraded correspondence to the GPP data

product. Not all parameter combinations show this, suggest-

ing that some of the Ma and Narea combinations might be

inappropriate for use in the far north (see discussion).
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Figure 12. GPP in KgC m−2 year−1 projected with structural ensemble member v (control + ALLOC + RESP + LL_TEMP + RL_TEMP

variants). Flux-derived product data are shown in panel (a). Panels (b)–(p) correspond to the 15 different combinations used in the parametric

ensemble.

4.5 Relative performance of individual plant functional

types

Figure 13 illustrates the absolute difference between the pro-

ductivity (annual NPP) of the EBT and the ENT for the third

year of the simulation for structural variant v. Each PFT

was run in isolation to calculate these differences. Here it

is clear that at the mid-latitudes, the EBTs have a signifi-

cant productivity advantage, which broadly maps onto the

eventual distribution of these PFTs in the competitive sim-

ulations discussed above. At higher and lower latitudes, the

ENT and BDT have approximately equal productivity. Pa-

rameter choice affects the distributions of the areas where

EBT has an advantage, but the pattern is consistent across the

ensemble, excluding parameter combination no. 13. Looking

at the performance of larger trees, where the LAI is equili-

brated with productivity, and effects of initialization have dis-

appeared (Fig. 14), there are either small differences or con-

siderable productivity advantages of the ENT type (exclud-

ing ensemble member no. 14). This implies that the EBTs

gain dominance early in the competitive interaction, presum-

ably by amassing leaf area at a greater rate than the ENTs.

Thus, the representation of light competition is instrumental

in producing biome boundaries in this example.

5 Discussion

We present here a demographic dynamic vegetation model

(ED), coupled to the biophysical scientific and software

architecture of the Community Land Model v4.5 (Oleson

et al., 2013). The CLM4.5(ED) model represents a substan-

tial modification to the representation of land surface het-

erogeneity in the CLM, and is intended as a template for

the investigation of vegetation dynamics and their properties

within the context of climate simulations. Particular features

of this model structure include (1) the flexible representa-

tion of plant functional type parameterization, (2) the repre-

sentation of plant demography and succession derived from

the ED concept, (3) the representation of self-organization

of plants into distinct canopy layers derived from the PPA

model, (4) the solution of canopy processes at relatively high

temporal (i.e., half-hourly) and vertical (i.e., multi-layer cal-

culations at a resolution of 1.0 LAI units) resolutions, and

(5) the ability to represent multiple different plant types

within the same vertical light profile. These features together

enable the model to select vegetation types based on their

growth performance, and to thus predict vegetation domi-

nance from the plant traits that affect relative productivity

of different vegetation types.
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Figure 13. Absolute difference in NPP (KgC m−2 year−1) between ENT and DBT (higher ENT productivity is positive) for year 3 of

simulation. Panels (b)–(p) correspond to the 15 different combinations used in the parametric ensemble.

Figure 14. Absolute difference in NPP (KgC m−2 year−1) between ENT and DBT (higher ENT productivity is positive) for year 14 of

simulation. Panels (b)–(p) correspond to the 15 different combinations used in the parametric ensemble.
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The prediction of plant distributions from plant traits al-

lows the testing of mechanistic hypotheses of plant biogeog-

raphy, and reduces the dependence of vegetation models on

climate envelopes. Successful prediction of vegetation pat-

terns can act as an independent test of our understanding of

the link between plant physiology and geographical spread.

Therefore, this feature is often stated as an aspiration for fu-

ture dynamic vegetation models (Purves and Pacala, 2008;

Verheijen et al., 2013; Boulangeat et al., 2012; Scheiter et al.,

2013; Fyllas et al., 2014; van Bodegom et al., 2014). Here we

test the assumption that biome boundaries can be predicted

as the emergent properties of relative carbon economies of

evergreen and deciduous leaf habits. Removing empirically

derived climatic constraints introduces additional internal

model feedbacks, as competitive interactions act to amplify

small differences in relative productivity. As we demonstrate

here, relatively small structural and parametric changes can

therefore have large consequences for predicted vegetation

properties and biogeochemical cycling. In this study, we uti-

lize the relationship between three of the traits most com-

monly featured in trait databases. Our intention is to highlight

the sensitivity to how traits are utilized, an approach that de-

mands some parsimony in the number of model components

that are allowed to vary simultaneously.

We find that the default model structure universally over-

predicted the dominance of broadleaf deciduous trees across

the entire domain. Some of this bias could be corrected by

increasing the maximum target leaf biomass quantity to be

proportional to leaf mass per area, highlighting the issue of

initial condition dependence in competitive models. Impor-

tantly, some of these simulations capture the properties of

biome boundaries in the real world (evergreen trees being

more prevalent in the north and south of the domain) and,

therefore, indicate that the basic hypothesis – that the car-

bon economy of evergreen trees is favorable in those envi-

ronments – has some quantitative support. Where DBTs are

dominant, their dominance appears to stem from rapid small-

stature growth rates, rather than from higher adult productiv-

ity.

Implementation of updated respiration functions had lim-

ited impact on the model output. The further implementation

of observed interactions between mean annual temperature

and leaf lifespan, and then root lifespan, had profound im-

pacts on the success of evergreen vegetation, particularly at

higher latitudes. For all structural variants, the choice of pa-

rameters for the leaf mass per area, leaf nitrogen and leaf

lifespan (in cases where it covaries with Ma and Narea) had

significant impacts on the predicted biome boundaries. We

find that the GLOPNET data as used here do not represent a

set of equally productive plant types when the traits are used

to drive modeled plant growth.

5.1 Potential avenues for structural model development

At least two large biases were indicated by the structural en-

semble that were not resolved by any of the tested modifica-

tions. First, the under-performance of DBTs at the northern

extent of their range, and second, the over-performance of

ENTs in the far north in some of the model simulations. To

address the latter, Reich et al. (2014) find some correlation

between MAT and leaf nitrogen allocation for their set of

ENT species. We did not detect a relationship between MAT

and Narea in the GLOPNET data; thus, this might be a topic

of future investigation. It is worth noting, additionally, that

the optimality criteria with which CLM(ED) predicts the leaf

area index is based on the avoidance of leaves in negative car-

bon balance. In cases of severe nutrient limitation, this might

be only an upper bound on LAI, and alternative metrics that

take into account the cost of nitrogen acquisition might be

more appropriate (Fisher et al., 2010; Brzostek et al., 2014;

Thomas and Williams, 2014).

5.2 Trait-filtering models

The CLM4.5(ED) is designed as a trait-filtering model, in

that it can predict successful vegetation types from their

traits via the “filter” of environmental conditions. One central

premise of trait-filtering models (Scheiter et al., 2013; Weng

et al., 2015) is that “trade-off” surfaces are necessary inputs,

and, implicitly, that moving along the surface means that per-

formance increases by some metrics, but gets worse in others.

The use of a proscribed trade-off surface is illustrated in the

Jena Diversity (JeDi) model (Reu et al., 2010; Bohn et al.,

2011; Pavlick et al., 2013). Potential plants (proxy species)

are selected from a seven-dimensional trade-off surface, and

the environment acts as a filter on this (large) population, re-

ducing the realized population to those proxy species that are

able to reproduce under given environmental conditions. Im-

plicit in this methodology are the assumptions that all trade-

off surfaces are fixed, and that they are independent of cli-

matic drivers.

Scheiter et al. (2013) discuss three classes of trade-offs

that may be considered in vegetation models – allocation

trade-offs (investment decisions in different tissues), me-

chanical trade-offs (intrinsic structural properties) and em-

pirical trade-offs that must be prescribed, in lieu of under-

standing of their mechanistic underpinning. In our study, the

three-way trait relationship between Narea, Ma and Ll is an

empirical trade-off. Contrary to observations across multiple

plant functional types (Wright et al., 2004), the within-PFT

trait relationships appear weak. Specifically, large variations

in leaf lifespan and in Narea are possible for the same leaf

carbon investment (Ma) (Figs. 1 and 2). If, for example, a

higher Ll value is chosen for the sameMa, the cost of canopy

replacement will go down, increasing plant leaf area index,

productivity, and growth. There is no downside in this model

framework to having longer-lived leaves. Therefore, in this
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case, the trait data fail to accurately define a trait trade-off. It

is possible to empirically define a surface fitted to the data,

and to remove the “noise” around the central tendency of the

data. This approach would necessarily reduce the tendency

to select plants with very high or low relative productivity,

but also would, in this case, be an inaccurate reflection of the

genuine spread of the data, given the lack of adherence to

clear trade-off surfaces.

Higher Narea increases both photosynthetic capacity and

respiration rates, so should be subject to some degree of

trade-off, depending on the climatological conditions (warm

nights and long winters increase the costs of high leaf N).

Nonetheless, the balance of these processes appears not to

produce equivalent performance across the space defined in

Figs. 1 and 2. This outcome highlights two potentially prob-

lematic issues with the trait filtering approach. The first is

that costs and benefits of alternative strategies might not

be represented completely by simple and easily observable

trade-off surfaces. The true “cost” to plants of long-lived

leaves may not be a linear function of Ma. Long-lived leaves

might well, for example, require investment resources in

complex and energetically expensive defensive compounds,

and so an alternative axis of investment and return might be

functionally more appropriate. The second issue is that trade-

off surfaces might not necessarily be consistent across loca-

tions (Moncrieff et al., 2015). For example, differences in the

environment (e.g., temperature) might increase the potential

lifespan of leaves by reducing herbivory rates and damage

from solar radiation.

5.2.1 Environmental drivers of plant traits

Here we find, in common with Reich et al. (2014) and

Kikuzawa et al. (2013), that, for evergreen trees, there is a

stronger relationship of temperature with leaf lifespan than

there is with carbon investment (Ma). In this example, the in-

clusion of a temperature-dependent leaf lifespan allows for a

greater fidelity representation of the real world, and results in

an improved prediction of the dominance of evergreen trees

at higher latitude. Thus, one might argue for the inclusion of

some climatic controls over trait distributions.

The direct prediction of plant traits from climate vari-

ables in dynamic vegetation models was adopted by Verhei-

jen et al. (2013) in their study using the JSBACH model,

and has been further advocated and augmented by van Bode-

gom et al. (2014). This approach – directly implementing the

observed relationships between plant traits and their climate

drivers – has the benefit that it uses the data available at the

present time with greater fidelity. In theory, and as we have

demonstrated, this approach should improve our ability to

allow prediction of current vegetation patterns. We are, for

example, telling the model that leaf lifespan decreases with

temperature, rather than expecting this property to emerge

from a more complex set of dynamics.

Direct prediction of traits from their environmental drivers

approach suffers, however, from at least three caveats. The

first is that it predicts mean trait values for given environ-

mental conditions and thus does not represent heterogeneity

of plant strategies in a single location. Furthermore, it is sub-

ject to a similar circularity of logic as the original climate en-

velope approach, in that the relationships of plant traits and

climate may well not hold under future circumstances where

atmospheric CO2, nitrogen deposition and other metrics of

climate are heavily modified. Lastly, under a changing cli-

mate, the shift in the mean trait values is considered instanta-

neous, no genetic limits to plasticity are implied and there is

no demographic inertia to the adoption of new, better adapted

plant types.

An ideal but data-intensive approach might involve the

derivation of trade-off surfaces specific to a given climate;

for example, for a given investment in leaf carbon there is a

climate-dependent relationship with lifespan. For most traits,

except those potentially observable from space (Serbin et al.,

2014), the quantity of data required to populate such a matrix

will likely remain prohibitive.

5.2.2 Alternative solutions: evolution and optimization

One alternative solution, exemplified by the aDGVM2 model

proposed by Scheiter et al. (2013), allows plant traits to

evolve in response to selection pressure. This approach

would likely “correct” plant traits that performed poorly un-

der given conditions, and let the optimum evergreen and de-

ciduous strategies emerge from the competitive process. This

approach is compelling, because it removes many of the sub-

jective elements of other existing strategies; it does not re-

quire pre-selection of particular trait combinations (as with

our parametric ensemble) and allows the representation of di-

versity of traits in a single grid cell. One important feature of

the model, however, is the assumption of globally consistent

trait trade-off surfaces (from which plant types are selected),

and thus further modifications might potentially be needed to

allow it to function in conditions where these were variable

in space.

Yet another alternative method for trait prediction is the

use of optimal models of plant function. Optimal models are

based on the idea that in theory better performing plants will

be favored by natural selection, and therefore plants that are

in existence should not display functionality that would be

detrimental to their evolutionary fitness (Dewar et al., 2009).

Many such approaches are already operational within vari-

ous types of vegetation model (Williams et al., 1996; Fisher

et al., 2007; Dewar et al., 2009; Rastetter, 2011; Medlyn

et al., 2011; Franklin et al., 2012; McMurtrie and Dewar,

2013; Thomas and Williams, 2014). In this framework, it is

possible to propose explicit hypotheses for how plants avoid

sub-optimal performance, and to make predictions that can

be tested against observations. The success of the approach

depends on the fidelity of the proposed optimality criteria,
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how closely they align with real evolutionary fitness, and

how close ecosystems really are to optimal solutions (given

genetic constraints and non-equilibrium processes).

From the perspective of land surface models, these ap-

proaches are interesting because of their mechanistic ap-

proach, which reduces concerns regarding out-of-sample

extrapolation into future climates. For example, predictive

models of within-leaf nitrogen allocation can explain envi-

ronmentally driven variations in Vc,max, Jmax and leaf respi-

ration, thus reducing the dependence on empirical correla-

tions between nitrogen content and photosynthetic capacity

(Xu et al., 2012). In this case, trait databases might be used

as validation data, rather than as model inputs.

The idea behind optimality models is occasionally under-

mined by studies using a game theory perspective, which

show that the optimal plant strategy in isolation differs some-

what from the optimal strategy that can compete with other

plants (Van Wijk and Bouten, 2001; Van Wijk et al., 2003;

Anten and During, 2011; McNickle and Dybzinski, 2013;

Farrior et al., 2013; Dybzinski et al., 2014; Weng et al.,

2015), illustrating the difficulties in choosing an appropriate

fitness metric. In common with the direct prediction of traits

from their environment, optimal models often assume only a

single optimal strategy for a given set of environmental con-

ditions, unlimited genetic plasticity, and ignore demographic

inertia that may prevent ecosystems from adapting instanta-

neously to a changing climate.

5.3 Ways forward for trait representation in dynamic

vegetation models

At present, many land surface modeling efforts use a vari-

ety of approaches to predicting plant traits, inclusive of trait-

filtering (Medvigy et al., 2009; Weng et al., 2015), direct

prediction of plant traits from their environment (e.g., allo-

cation from Friedlingstein et al., 1999) and ideas from opti-

mization theory (e.g., stomatal conductance, vertical N allo-

cation). Many parallel concepts exist for how to define plant

traits within advanced vegetation models (Dewar et al., 2009;

Scheiter et al., 2013; van Bodegom et al., 2014; Fyllas et al.,

2014), but the circumstances under which it is most appro-

priate to use which methodology is a topic that has not been

discussed widely. To move the science of vegetation model-

ing forward, we argue that it will become necessary to under-

stand under what conditions empirical “short cuts” to predict

traits are acceptable and necessary, and under what circum-

stances detailed mechanistic prediction is either possible or

desirable. In the first instance, it is, of course, imperative to

both further advance the collection of data on plant traits and

processes where possible, and to continue investigations into

plant trait databases that already exist, ideally in a context

that is linked to the requirements of predictive models (e.g.,

Falster et al., 2011; Wang et al., 2012; Reich et al., 2014; van

Bodegom et al., 2014; Fyllas et al., 2014). We consider that

the analysis of plant trait data to determine how both envi-

ronmental conditions and plant strategies (such as the “fast–

slow” axis, proposed by Reich, 2014) can be used to generate

robust predictive models is an extremely high priority. It is

worth noting also that while our study does not consider the

impact of changing climate on carbon cycle processes, the

alternative structural variants imply both different lag times

and feedbacks to the impact of climate, via the use, or other-

wise, of direct impacts of temperature on turnover processes.

5.4 On the use of ensembles in land surface modeling

Another aspect of our study highlights the importance of en-

sembles for the investigation of model properties. It is the

default practice, in land surface modeling and climate sci-

ence generally, to present results using the name of a par-

ticular model to depict an invariant set of default parameter

and structural assumptions (e.g., CLM4.5, JULES1.0, ED2)

and to assess the merits of only one version of a model from

the hyper-dimensional set of potentially viable model predic-

tions. Such “simple” tests of model performance against ob-

servations, however, explicitly convolute the structural, para-

metric and initial condition contributions to model error, and,

therefore, interpretation of mismatches with data is difficult.

We here argue that increased use of both structural and para-

metric ensembles is beneficial for the development of under-

standing of complex land surface modeling schemes.

In Earth system modeling more widely, the use of initial

condition ensembles is increasingly considered to be criti-

cal for the evaluation of model behavior (Kay et al., 2014;

Wettstein and Deser, 2014; Falloon et al., 2014; Lombardozzi

et al., 2014; Swart et al., 2015). Model inter-comparison

projects, both for Earth system models (Friedlingstein et al.,

2014; Arora et al., 2013) and their land surface model com-

ponents (Sitch et al., 2008; Powell et al., 2013; Kauwe et al.,

2013; Zaehle et al., 2014; Christoffersen et al., 2014; Walker

et al., 2014), are used as a means of investigating the im-

pact of alternative model structures, although typically the

high dimensionality of the inter-model differences renders

it difficult to assess the causes of differences between mod-

els (but cf. Zaehle et al., 2014). In this study we investigate

a variety of model structures within the same framework.

This approach, also adopted by Williams et al. (2001), Bo-

nan et al. (2012, 2014), Joetzjer et al. (2014), Reich et al.

(2014), Burakowski et al. (2015), and Dahlin et al. (2015)

among others, enables the differences caused by individual

modifications to be quantified and understood, and there-

fore potentially provides a more tractable approach to un-

derstanding the processes leading to prediction differences

than a standard model inter-comparison experiment. Pertur-

bation of the parameters of land surface models (referred to

as “perturbed physics” ensembles) is rarely undertaken at

scales larger than one grid cell (but cf. Fischer et al., 2011 and

Booth et al., 2012) on account of the high time and energy

costs of global model simulations. Perturbed physics ensem-

bles of Earth system models have been conducted but have
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typically focused on processes unrelated to the land compo-

nent (Sanderson et al., 2008). While some objective statis-

tical techniques have been used for single sites (Fox et al.,

2009; Hou et al., 2012; Medvigy et al., 2009; Sargsyan et al.,

2014), inverse model calibration of DGVMs over large re-

gions is not yet considered a computationally tractable prob-

lem. More typical is the process of ad hoc parameterization,

either using values of observable parameters from the liter-

ature that may or may not be representative of globally rel-

evant values, or the use of “tunable” parameters that might

be adjusted to bring the overall model behavior closer to ob-

servations, as also discussed by Scheiter et al. (2013) and

Reich et al. (2014). Thus, model parameters are typically

not optimized and therefore the comparison of model per-

formance to benchmarking data (Randerson et al., 2009; Luo

et al., 2012) is not necessarily a good test of the structural

validity of the model components (Abramowitz et al., 2008).

Model structural performance is therefore much more com-

monly assessed at individual sites, where sensitivity to pa-

rameters can be investigated more comprehensively (Bonan

et al., 2014). An alternative path forward might be to present

models with no default parameter values, and instead with a

range of physiologically plausible parameters, thus reducing

the correspondence between named model structures and a

single deterministic set of outputs.

6 Conclusions

We introduce a new methodology for the simulation of veg-

etation dynamics into the Community Land Model (v4.5).

The new module is based on the Ecosystem Demography

framework of Moorcroft et al. (2001) with numerous mod-

ifications. We present an investigation into the properties of

the model for the case study of evergreen-deciduous biome

boundaries in eastern North America. We find that the model

is sensitive to the variation in parameters drawn from ex-

isting plant databases, and to variation in the representa-

tion of the carbon cycle, in particular, to the initial target

leaf biomass, and to the implementation of direct prediction

of traits (leaf lifespan, and root lifespan) from environmen-

tal variables (mean annual temperature). We also find that

the model is capable of predicting leaf area index and GPP

within the range of the observations, and that for some trait

combinations, prediction of the positioning of biome bound-

aries is close to the observations. Our study particularly em-

phasizes three challenges: (1) uncertainty about when it is

appropriate to use environmental drivers to modify plant trait

trade-offs, (2) remaining structural uncertainty within mod-

els, particularly with regard to carbon allocation processes,

and (3) uncertainty resulting from “noise” around trait trade-

offs in existing databases. Nonetheless, echoing Reich et al.

(2014), the capacity to understand the prediction of biome

boundaries from first principles is both interesting and im-

portant. We hope that further study of the quantitative nature

of biome boundaries will be motivated by this analysis.
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