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Abstract. Conversion of native forests to agriculture and urban land leads to
fragmentation of forested landscapes with significant consequences for habitat
conservation and forest productivity. When quantifying land-cover patterns
from airborne or spaceborne sensors, the interconnectedness of fragmented
landscapes may vary depending on the spatial resolution of the sensor and the
extent at which the landscape is being observed. This scale dependence can
significantly affect calculation of remote sensing vegetation indices, such as the
Normalized Difference Vegetation Index (NDVI) and its subsequent use to
predict biophysical parameters such as the fraction of photosynthetically active
radiation intercepted by forest canopies (fPAR). This means that simulated
above-ground net primary productivity (NPPA) using canopy radiation intercep-
tion models such as 3-PG (Physiological Principles for Predicting Growth),
coupled with remote sensing observations, can yield different results in frag-
mented landscapes depending on the spatial resolution of the remotely sensed
data.

We compared the amount of forest fragmentation in 1 km SPOT-4
VEGETATION pixels using a simultaneously acquired 20 m SPOT-4 multi-
spectral (XS) image. We then predicted NPPA for New Zealand native forest
ecosystems using the 3-PG model with satellite-derived estimates of the fPAR
obtained from the SPOT-4 VEGETATION sensor, using NDVI values with
and without correction for fragmentation. We examined three methods to
correct for sub-pixel fragmentation effects on NPPA. These included: (1) a
simple conversion between the broad 1 km scale NDVI values and the XS
NDVI values; (2) utilization of contextural information from XS NDVI
pixels to derive a single coefficient to adjust the 1 km NDVI values; and (3)
calculation of the degree of fragmentation within each VEGETATION 1 km
pixel and reduce NDVI by an empirically derived amount based on the
proportional areal coverage of forest in each pixel. Our results indicate that
predicted NPPA derived from uncorrected 1 km VEGETATION pixels was
significantly higher than estimates using adjusted NDVI values; all three
methods reduced the predicted NPPA. In areas of the landscape with a large
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degree of forest fragmentation (such as forest boundaries) predictions of
NPPA indicate that the fragmentation effect has implications for spatially
extensive estimates of carbon uptake by forests.

1. Introduction

The clearing of native forest for agriculture, pasture, harvesting or urban

development can severely compromise the integrity of existing native ecological

systems through loss of native species, invasion of exotic species, soil erosion, and

changes in forest production (Forman and Godron 1986, Collinge 1996). This

clearing of native scrub and forest also leads to landscape fragmentation when

large, continuous areas of forests are divided into smaller blocks. Human-induced

clearing of New Zealand forests was initiated by Polynesian migrants around

1000 BP, who reduced the total forest area by approximately 20% (Newsome 1987,

Meurk and Swaffield 2000). Over the past 150 years, New Zealand’s forest have

continued to be cleared for agriculture and urban development, with many

indigenous forests cleared for pasture. More recently, areas of pasture have been

replaced by plantations of exotic species such as Pinus radiata and other

commercially valuable species (Meurk and Swaffield 2000). Currently about 33%

of the original indigenous forest area remains (Newsome 1987).

The fragmentation of native forest into smaller discrete blocks of remnant forest

has a significant effect on the landscape by both increasing the perimeter of forest

patches and changing the structural characteristics of the blocks themselves (Murcia

1995). For example, along edges of forest blocks, light availability is often elevated,

leading to increased production (Young and Mitchell 1993). However, edge

lengthening also increases the vulnerability of trees to wind. As a result the size and

placement of remnant forest blocks within the landscape can have a significant

impact on the habitat and forest productivity across the forest (Collinge 1996).

New Zealand, like many countries, is developing an understanding of their

national carbon budget using a variety of methods to quantify changes in carbon

storage in forests and scrub vegetation (e.g. White et al. 2000, Hall et al. 2001). One

approach utilizes production efficiency models that provide spatially explicit

estimates of above-ground net primary productivity (NPPA) based on plant

physiological processes; these models can also be driven by satellite observations

that provide information on vegetation canopies (Goetz et al. 1999). A number of

studies have demonstrated that when broad-scale remotely sensed observations are

coupled with vegetation process models, the aggregation of surface properties either

through the inherent restrictions of sensor resolution or by direct data manipulation

result in an over estimation of vegetation productivity (White and Running 1994,

Pierce and Running 1995).

White et al. (2000) and Coops et al. (2002) applied a simple physiological model

(3-PG; Physiological Principles for Predicting Growth) to estimate NPPA of a

number of vegetation types in New Zealand. The 3-PG model is typical of many

vegetation process models in that it estimates gross primary production (PG), a

fraction of which becomes net primary production (NPP), which is then allocated

to different vegetation components (constrained by temperature, water supply, and

nutrition (Landsberg and Waring 1997)). The 3-PG model requires few parameters,

which can be easily derived from literature or from field measurements (Landsberg
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and Waring 1997, Coops et al. 1998). The monthly time step of the model requires

average daily short-wave incoming radiation, mean vapour pressure deficits,

temperature extremes, total monthly rainfall and estimates of soil water storage

capacity and fertility. When coupled with remotely sensed observations, 3-PG uses

the fraction of photosynthetically active radiation absorbed by the forest canopies

(fPAR) to constrain carbon uptake. fPAR is estimated from a satellite-derived

index, based on the normalized difference between reflectances measured in the

near-infrared and red wavelengths, termed the Normalized Difference Vegetation

Index (NDVI). Predictions by 3-PG of above-ground stem biomass for the New

Zealand South Island (r2~0.82), and total vegetation biomass for the entire

country (r2~0.72) were highly correlated with field estimates once key 3-PG

parameters were calibrated for New Zealand vegetation (White et al. 2000).

Estimates of NPPA were also produced by the model coupled with satellite imagery

obtained from the SPOT-4 VEGETATION sensor at 1 km spatial resolution. The

coupled model predicted stand NPPA for sites across both islands well (r2~0.80)

when compared with field estimates (Coops et al., in press).

Regional and global simulations of NPPA are most easily accomplished using

remotely sensed data with high-temporal frequency and low spatial resolution

(Moody 1998) such as the Advanced Very High Resolution Radiometer (AVHRR)

1.1 km or SPOT-4 VEGETATION 1 km sensors. However many of the factors

controlling vegetation condition such as human-induced clearing for agriculture

and urban development occur at fine spatial scales only apparent using high spatial

resolution remote sensing instruments (Moody 1998) and not at the scales observed

by most global observing satellites. Fine-scale remote sensing of fragmented forest

landscapes reveals a mosaic of different land-cover classes whose degree of

interconnectedness can change based on the grain and extent (scale) at which the

landscape is being observed. For example, if the size of remnant fragments of forest

vegetation is 10 ha, and the pixel resolution of the acquired image is 100 ha (the

typical size of AVHRR), then the signal-averaging process of the land-cover classes

within the 100 ha pixel is an important issue. This is often referred to as the spatial

scaling effect (Chen 1999).

Our objective in this paper was to investigate the spatial scaling effect on simulated

NPPA at broad scales (1 km spatial resolution) using a coupled vegetation process

model driven by satellite imagery. To do this, forest fragmentation was estimated from

a unique dataset; simultaneously acquired 1 km SPOT-4 VEGETATION and 20 m

SPOT-4 multispectral (XS) imagery. A number of different methods are proposed to

adjust the 1 km SPOT-4 VEGETATION data to account for observed fragmentation

in the 20 m XS imagery.

2. Background

Contextural indices capture structure and patterns of fragments or objects in an

image and include metrics such as the number, size, shape, area and pattern of

objects and the distance between objects (Mather 1987) and provide a measure of

the average variability of discreet or continuous objects within a viewing window.

The use of contexture as an index of variation is different to patch variance (degree

of changes within a specified distance) within a pixel. Chen (1999) concluded that

when quantifying scaling effects contextural parameters have a number of key

advantages over variance parameters including:
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1. that contexture is the major cause of variation in the remote sensing

response;

2. it can be more easily obtained than variance information at high resolutions

(such as area relationships); and

3. the scaling methodology using contextural parameters is generally simpler

than variance-based methods.

An example of the difference in variance and contexture within a broad-scale

pixel is shown in figure 1. In this figure we consider two broad-scale pixels (each

approximating 1 km61 km, similar to a broad-scale pixel obtained from a low

spatial resolution, high temporal resolution sensor) with nine individual sub-scene

units of known land use. In this example, we consider the white pixels land and the

black water. In both cases the variance of the 1 km pixel (assuming mean values of

water and land) is the same. However, the mean land area covered by water is 22%

in figure 1(a) versus 78% in figure 1(b). The contexture of each pixel (in this case, the

area of water versus the area of land) is a better measure of sub-pixel structure than

the internal variance.

Chen (1999) concluded that when a broad scale, large area pixel, contains two

contrasting cover types (such as vegetation and open water), derived bio-physical

variables (such as fPAR, or alternatively leaf area index (L)) can be over-predicted

by up to 45% of the correct value depending on the water area fraction in the pixel.

These biases depended on contexture and little on variance (Chen 1999). In boreal

regions with numerous small water bodies, simulations (Chen 1999) showed that the

most useful contextural parameter for quantifying the scaling effect in mixed pixels

was the water area fraction within each degraded pixel. In New Zealand, the role of

small water bodies is less important compared to the influence of land-cover pattern

on broad-scale pixel response, as the native scrub land and forest of New Zealand

are fragmented due to urban encroachment and conversion to agricultural land.

3. Study area

In order to investigate the spatial scaling effect on simulated NPPA we selected a

region (60 km660 km) containing most of the land-cover types found in New

Zealand and covered a productivity and topographic gradient. Approximately 40%

Figure 1. Schematic diagram of two 1 km61 km pixels with sub-pixel variation evident in
the nine internal pixels. Each large pixel has the same internal variance but a
markedly different contextural parameter.
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of the region is native forest, with large areas of mountain beech forest (Nothofagus

solandrii) ranging in biomass from 196 to 312 Mg DM ha1 (Hall et al. 2001) with

small areas of exotic Pinus radiata plantations; an additional 40% of the area is

pasture and arable land with the remainder low biomass scrub lands and snow

covered grassland.

4. Input data

The SPOT-4 (Satellite Pour l’Observation de la Terre) satellite has two sensors:

a high spatial resolution (20 m) multi-spectral imager (denoted as XS) which images

in four spectral bands (blue: 0.43–0.47 mm, red: 0.61–0.68 mm, near-infrared:

0.78–0.89 mm and short-wave infrared: 1.58–1.75 mm) and the VEGETATION

sensor which is analogous to the AVHRR sensor. The VEGETATION sensor has a

spatial resolution of 1 km with daily image acquisition of the same location for sites

above 35‡ north and south latitudes. Geometric accuracy of derived VEGETA-

TION products is estimated at 350 m and simultaneous acquisition of high spatial

resolution SPOT XS imagery (20 m) is possible.

One of our datasets consisted of two images acquired simultaneously on

5 January 1999 from the SPOT-4 satellite (figure 2). One image was obtained from

the high spatial resolution XS sensor, and the other a single scene from the SPOT

VEGETATION sensor (table 1). Both scenes were provided by CNES (Le Centre

National d’Etudes Spatiales) in geometrically corrected form (with a stated spatial

accuracy of less than half a pixel; 10 m for XS and 350 m for VEGETATION). The

raw digital values of the two single SPOT-4 scenes were atmospherically corrected

in an identical manner for path radiance due to atmospheric scattering using the

clear lake method (Ahern et al. 1987). Average radiance values for the deep ocean

surrounding both islands (for the VEGETATION image and off the coast on the

XS image) were calculated and subtracted from the original radiance values.

Neither scene was corrected for atmospheric transmissivity, as no ground-based

data were available for the aerosol comparison covering the complete areas of both

images. The NDVI was calculated for both images from the corrected band 3 and

band 2 wavelengths where NDVI~(b3–b2)/(b3zb2).
The second dataset consisted of 12 monthly composites of daily VEGETATION

data at 1 km resolution collected over the 1998/9 growing season. These composite

VEGETATION products were supplied and fully corrected for atmospheric

and geometric effects by the VEGETATION program (see for additional data and

specifications http://www.spotimage.fr/data/images/vege/vegetat/home.htm). This

CNES calibration involved spectral band registration corrected for satellite location

and altitude and terrain elevation.

Atmospheric correction was undertaken based on sensor-derived water vapour,

ozone and aerosol parameters. The monthly composites of NDVI were then

resampled onto the New Zealand Map grid.

The two images acquired on 5 January 1999 are shown in figure 2. Figure 2(a)

shows the XS 20 m resolution NDVI image over the 60 km660 km study area, and

figure 2(b) shows the VEGETATION 1 km NDVI image for the same region. The

images show the study area with mixed land cover of predominantly forests,

woodlands and pasture/agricultural land. The white regions in the VEGETATION

image (high NDVI) in the south and west of the images are forested, with
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Figure 2. NDVI images at (a) 20 m spatial resolution from the XS sensor and (b) 1 km
resolution from the VEGETATION sensor.

824 N. C. Coops et al.



Table 1. Three scaling approaches to account for the spatial scaling effect on broad-scale imagery.

Technique Description Equation

Simple image
fragmentation

Scale and discount VEGETATION NDVI
by mean of 20 m values to account
for contexture of other cover types.

New_NDVI (1 km)~VEGETATION_NDVI6
mean 20 NDVI (figure 6)

Scene-based
fragmentation

Compute mean fragmentation of each 60 km
scene and reduce VEGETATION NDVI
by a constant factor.

New_NDVI (1 km)~VEGETATION_NDVI6
scene fragmentation value (obtained
from figure 4)

Pixel-based
fragmentation

Compute mean fragmentation in each 1 km cell
of the scene and reduce VEGETATION NDVI
by dynamic calculation of potential fragmentation.

New NDVI 1kmð Þ~VEGETATION NDVI|
(individual pixel fragmentation value
(obtained from figure 8), NDVI reduction, figure 4)
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agricultural land predominantly in the centre and north-eastern portions of the

scene.

5. Methods

5.1. Single scene analysis

As this paper is principally concerned with assessing the effect of fragmentation

on the prediction of forest biomass accumulation, it is important to distinguish

dense forest and scrub vegetation from cleared land, pasture and agriculture and all

other land uses. Whilst the issue of fragmentation of agricultural and pasture areas

by urban encroachment is important, it is not the focus of this study; therefore a

simple forest/non-forest mask is all that is required. A simple forest mask was

generated using spectral threshold values from the XS NDVI image (White et al.

1997). Thresholds were iteratively selected by comparing the extent of each forest

mask to maps and local information. A NDVI value of 0.4 was used as the

threshold on the XS image, with pixels having a NDVI value greater than 0.4

assigned as dense forest and scrub vegetation and less than 0.4 assigned as

non-forest/sparse scrub. It is acknowledged that highly managed and irrigated

agricultural areas may also be included in the dense vegetation class using this

threshold. Applying this NDVI threshold to the XS image therefore allowed the

development of a two-cover class map (forest/non-forest) and the boundaries

between these classes were assumed to represent variations in the degree of forest

fragmentation occurring in the landscape.

Chen (1999) described the mathematical basis of calculating bio-physical

variables such as fPAR from mean reflectance for pixels with mixed sub-pixel land-

cover classes. This mathematical step is required as the relationship between NDVI

and the mean pixel reflectance in the red and NIR regions of the spectrum is

non-linear. In a simple land-cover type situation with two classes, land-cover class

A has a certain fraction, v, of cover in a given pixel and therefore, by definition,

land-cover class B will have the fraction, 12v, of cover in the same pixel. The mean

pixel reflectance in the red and near-infrared regions of the spectrum in the broad-

scale pixel is given by:

rr~vrr,Az 1{vð Þrr,B ð1Þ

rnir~vrnir,Az 1{vð Þrnir,B ð2Þ
where rnir,A and rr,A are reflectance values in the NIR and R regions of the

spectrum for cover type A, respectively and rnir,B and rr,B are reflectance values in

the NIR and R regions of the spectrum for cover type B, respectively.

The mean NDVI for the broad-scale pixel is therefore:

NDVI~
v rnir,A{rr,A

� �
z 1{vð Þ rnir,B{rr,B

� �

v rnir,Azrr,A

� �
z 1{vð Þ rnir,Bzrr,B

� � ð3Þ

Using mean reflectance values from the XS image for the forest and non-forest class

we can simulate the response of a mixed pixel using the equation of Chen (1999).

Figure 3 indicates that the forest/non-forest example (+) is strongly non-linear.

NDVI values of 1 km pixels remain relatively stable for forest fragmentation

values between 30 and 100% forest cover (figure 3). Once the 1 km pixel contains

less than 30% forest area, the NDVI falls rapidly. The second curve (&) is the
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water–vegetation curve and is similar to the curve of Chen (1999) with an almost

linear decrease in NDVI at the 1 km scale as the degree of water fragmentation

increases.

5.2. Physiological biomass modelling (using 3-PG simulations)

The 3-PG model requires monthly climate surfaces, including maximum/

minimum temperature (‡C), total precipitation (mm), and daily average short-wave

radiation (MJ m22 day21). In addition, 3-PG requires basic information on soil

fertility and soil water holding capacity. Coops et al. (2002) details the processing

steps and data sources required for these data layers. When coupled with remotely

sensed observations from the monthly VEGETATION data, 3-PG uses estimates of

fPAR absorbed by the forest canopy to constrain carbon uptake. SPOT

VEGETATION was calibrated with field-based estimates of fPAR obtained

from the LAI-2000 (Li-Cor, Lincoln, Nebraska, USA) (Welles 1990, Welles and

Norman 1991). Average hemispheric gap fraction was measured at 11 different

locations across the North and South Islands of New Zealand in November 1997

on the assumption that average hemispheric gap fraction is a reasonable surrogate

for fPAR and that clumping of foliage was random. Sites were selected to cover a

gradient in elevation and precipitation with dominant forest and scrub types

represented and a geographic extent ranging across the central South Island from

the east to the west coast. A North Island site was also selected in the central

volcanic plateau highlands where woody scrub vegetation has been previously

studied (Scott et al. 2000). A simple linear adjustment was performed (Goward et al.

1994) on the SPOT VEGETATION November 1998 NDVI values to predict fPAR.

Figure 3. Variation in NDVI with a sub-pixel non-forest versus forest (+) and forest versus
inland water (&) fraction from Chen (1999) derived from SPOT XS imagery.
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The developed equation was:

fPAR~ 0:45|NDVIð Þz0:61 ð4Þ
where NDVI is the SPOT-4 VEGETATION NDVI values between 21 and 1

(n~11, r2~0.82).

The 3-PG model, coupled with the broad-scale VEGETATION data, was run

using standard parameter values and constants described in Coops et al. (2002).

Detailed information on the selection of parameters for New Zealand forests are

documented in White et al. (2000). The 3-PG simulation was run for a 12–month

period from July 1998 to June 1999.

6. Results

6.1. NDVI comparison between 1 km and 20m images

The 1 km grid over the VEGETATION image allows the 1 km NDVI value to

be compared with the mean NDVI value for the same 1 km area on the XS 20 m

image. The relationship between the 1 km NDVI (X axis) and the mean 20 m NDVI

averaged over each 1 km grid-cell (Y axis) is shown in figure 4.

The slope of the relationship is 1.08, which differs significantly from 1 (pv0.05),

and the intercept is significantly different than 0 (pv0.05), indicating a bias in the

relationship between NDVI values measured at different spatial scales. The figure

confirms the NDVI trajectories shown in figure 3, with broad-scale NDVI values

overestimating the mean NDVI value of the high spatial resolution pixels

aggregated up to 1 km pixels. At low NDVI values (NDVI~0.1), mean 20 m

NDVI values are overestimated by 28% at the 1 km scale; at higher NDVI values

(NDVI~0.7), mean 20 m NDVI values are overestimated by 22% at the 1 km scale.

Figure 4. Relationship between 1 km VEGETATION NDVI values and 1 km NDVI values
obtained by averaging 20 m pixels contained within the 1 km pixels.
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6.2. Image fragmentation

As the single SPOT-4 VEGETATION and XS images were acquired simul-

taneously with identical atmospheric and vegetation conditions, it is possible to

compare the areal extent of different land-cover types (or fragmentation of forest

vegetation) in each 1 km pixel with the land cover in the 20 m pixels.

Using a threshold NDVI of 0.4 to distinguish forest from non-forest, we estimated

fragmentation by comparing the NDVI value of the 1 km VEGETATION pixel

against the proportion of 20 m forest non-forest cells within the same 1 km pixel

(figure 5). VEGETATION pixels with a NDVI of 1.0 have virtually no fragmen-

tation at the 20 m scale with 100% of the 20 m pixels having an NDVI greater than

0.4 (figure 5). Alternatively, a VEGETATION NDVI value of 0.8 indicates that the

proportion of 20 m forest cells has fallen to 80% (or alternatively that 20% of the

20 m cells were non-forest (figure 5)). Likewise, VEGETATION NDVI equal to 0.6

had 38% forest at 20 m resolution and broad-scale 1 km pixels with an NDVI equal

to 0.4 had only 11% forest at 20 m resolution. A number of models were fitted and

a logarithmic function was found to be the most suitable (equation (5), figure 6,

r2~0.97).

Proportion forest in 1 km cell~109:48 ln NDVIð Þz103:52 ð5Þ
At low (0.4–0.48) and mid (0.7–0.9) NDVI values, fragmentation was slightly

overestimated, while between 0.48 and 0.68 fragmentation was slightly under-

estimated (figure 7). This relationship (figures 8 and 9) provides a link between the

broad-scale VEGETATION NDVI values frequently used in production-efficiency

models with fine-scale contextual information in each pixel.

Figure 8(a) shows the spatial extrapolation of the logarithmic equation (5) using

the VEGETATION 1 km NDVI data as the input. Pixels that are predicted to

contain both forest and non-forest classes are shown as black and pixels that are

predicted to be ‘pure’ are shown as white (figure 8(a)). The figure shows pixels in the

Figure 5. Estimated degree of fragmentation (y-axis) within 1 km VEGETATION pixels,
stratified by NDVI (x-axis) using 20 m forest and non-forest cells (i.e. % of 1 km cell
vegetated) using simultaneously acquired SPOT-4 imagery for New Zealand.
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centre of large areas of forest are white indicating they are completely filled with

forest vegetation similar to the NDVI image (figure 2(b)); however, the logarithmic

transform provides an indication of the sub-pixel fragmentation with the edges of

the forest being predicted as having more fragmentation and are thus darker.

Figure 8(b) transforms figure 8(a) using figure 6 and provides an indication of the

reduction in NDVI that is expected based on the degree of fragmentation within the

pixel. If the reduction is small then it indicates that the predicted value is similar to

the actual broad-scale value (white in figure 10(b)). If the value is large then there is

significant difference between the actual NDVI value and the predicted value (if the

pixel was 100% filled with forest) (black in figure 8(b)). The figure shows the large

patches of forest are bright with high values indicating no significant change

predicted in NDVI based on sub-pixel fragmentation. By contrast, the areas along

Figure 6. Relationship between 1 km VEGETATION NDVI and degree of fragmentation
(using a logarithmic function) within 1 km VEGETATION pixels.

Figure 7. Residuals of the fitted logarithmic function depicted in figure 6.
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Figure 8. (a) Predicted sub-pixel forest/non-forest fragmentation within 1 km SPOT
VEGETATION image using SPOT XS 20 m forest/non-forest classification (pixels
predicted to contain both forest and non-forest are shown as black, and pixels predicted
to be ‘pure’ are shown as white). (b) Transformation of (a) to predicted variation in
NDVI based on pixel fragmentation. White indicates small NDVI reduction due to
fragmentation, black indicates high degree of fragmentation correction.
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the west of the study area that have significant forest fragmentation are black,

indicating significant reduction in NDVI based on predicted fragmentation. Likewise,

high variability in the pasture areas in the east of the study area (figure 2(a))

(indicating patches of native forest vegetation) also appear to be highly fragmented.

6.3. Proposed scaling alternatives

Based on these results, we propose three methods by which the 1 km

VEGETATION pixel and the fine-scale SPOT XS image can be used to provide

information on forest fragmentation, and its subsequent effect on broad-scale

estimates of NDVI, fPAR and, ultimately, simulated NPPA (table 1).

Figure 9. Predicted NPPA for (a) the uncorrected NDVI images, and (b)–(d) the three
different methodologies presented in table 1.
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1. Simple image fragmentation. A simple regression relationship that accounts

for the over-estimation of broad-scale NDVI values when compared with the

aggregated 20 m NDVI values can be derived by comparing sample areas using

both 1 km and 20 m data. From this a simple conversion can be derived which

adjusts the broad 1 km scale NDVI values (figure 4). This method applies the simple

shift to all broad-scale NDVI values, and simply accounts for shifts in the NDVI

regardless of land-cover types present. This approach requires limited information

on the fine-scale variation in the scene. General equations like this could be

generated at selected sites over the entire country and applied to remove any broad

bias in broad-scale NDVI values.

2. Scene-based fragmentation. This adjustment utilizes the contextural informa-

tion of the fine-scale NDVI scene by computing the degree of fragmentation for the

whole scene at the 1 km pixel size and then adjusting the 1 km NDVI value by an

amount according to figure 3. To do this requires an a priori assumption as to the

Figure 10. Difference in NPPA between 3-PG predictions based on uncorrected NDVI
images and NDVI images corrected using the pixel-based correction method.
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two major contrasting land-cover types in the image. If, such as in this case, a

combination of forest and non-forest land-cover types exists, figure 3 indicates that

a mean 1 km pixel with 100% forest vegetation has a NDVI equal to 0.74. If the

mean degree of fragmentation for the image, at the 1 km scale, was 78%, the mean

corrected NDVI value is 0.68 resulting in an NDVI reduction of 0.1 NDVI units or

12%. The benefit of this technique, compared to the previous one, is that it allows

the actual fragmentation values of the landscape to be explicitly accounted for in

the study area.

3. Pixel-based fragmentation. The final method allows the actual amount of

fragmentation within each 1 km cell to be calculated and the NDVI adjusted

accordingly. The developed logarithmic relationship (figure 6) that predicts the

amount of fragmentation in each 1 km pixel based on the VEGETATION NDVI

value is developed based on inter-comparison between 1 km and 20 m data. Using

the predicted percent fragmentation for each pixel, the reduction in NDVI can be

derived from figure 3 as before. The benefit of this method over the previous ones is

that, using the logarithmic relationship specifically developed for these two scenes,

the broad-scale image can be dynamically adjusted on an individual pixel basis

using the 1 km NDVI values.

Using these three methods for correcting the coarse-scale NDVI based on

fragmentation (table 1), we simulated NPPA for the area covered by the high

resolution SPOT-XS image using the 3-PG model (figure 9). Figure 9(a) shows the

uncorrected prediction of NPPA. As figure 9 indicates, the prediction of NPPA

based on the different correction methods appear similar (figure 9(b)–(d)), indicating

similar predictions of NPPA over the area. Importantly, a number of environmental

factors such as species adaptation to temperature, fertility and water use are all

used in the prediction of NPPA using 3-PG. As a result patterns in NPPA will vary

compared to the input NDVI images. The difference between the original and the

simple image-based correction (the simple adjustment of VEGETATION NDVI by

a scaling factor) is minor and simply reduces the overall fPAR of the scene by a

constant amount. The scene-based fragmentation method also reduced the scene

fPAR by a constant fraction, which is less than the overall image adjustment

(NDVI reduction of 12% versus 22%) resulting in a mean prediction of NPPA lying

between the original and the simple adjustment method. The final pixel-based

fragmentation method uses individual pixel-based calculations of fragmentation

and reduces each VEGETATION NDVI pixel by the correct amount and thus

produces a different result (figure 9(d)). Much of the agricultural regions have

reduced and more constant NPPA values compared with the original, uncorrected

simulations (figure 9(a)). This is due to the predicted fragmentation effect removing

much of the variation in the eastern portion of the study area (figure 9(a)). In

addition, the prediction of NPPA appears less smooth than the uncorrected image

with more high frequency information along the boundaries between land uses with

areas where fragmentation clearly exists having less NPPA than the original

uncorrected predictions. Figure 10 shows the difference between the predictions of

NPPA using the uncorrected and the pixel-based fragmentation method. White

pixels indicate a greater prediction of NPPA from the uncorrected NDVI imagery

and dark pixels indicates a greater prediction of NPPA. The difference image again

shows areas where mixed pixels are likely to occur having significantly reduced
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NPPA by up to 100%. In contrast, within large areas of forest the difference

between the two methods is much smaller.

We assessed statistical differences between the three methods and the original

simulations using a one-way ANOVA with a Tukey’s HSD post hoc analysis

(figure 11). The ANOVA indicated that the original (uncorrected) simulation was

significantly (pv0.05) different from all fragmentation-corrected predictions. The

ANOVA also indicated that the simple image-based fragmentation technique and

the scene-based fragmentation (the two methods involving a simple rescaling of the

NDVI) were not significantly different from each other however were different from

the pixel-based fragmentation method.

7. Discussion and conclusion

When modelling ecosystem processes, aggregation of surface properties either

through the inherent restrictions of sensor resolution or by direct data manipulation

results in overestimation of vegetation productivity (White and Running 1994,

Pierce and Running 1995). Landscapes are generally heterogeneous at spatial scales

finer than most global observing satellites. Contextural characteristics of high

spatial resolution data are useful for adjusting vegetation indices that are used to

estimate intercepted radiation by vegetation with varying absorption properties,

biomass and phenology. Therefore, the effect of spatial resolution on the prediction

of forest biophysical properties and land classes has been an area of ongoing study

in the remote sensing community (Moody and Woodcock 1994, Mayaux and

Lambin 1995). This is particularly important for improving estimates of carbon

budgets at different spatial scales, as remote sensing is frequently used to either map

vegetation classes or quantify forest biophysical properties such as fPAR.
Moody (1998) attributes these resolution effects to (a) a tendency for dominant

Figure 11. Differences (mean and 95% confidence intervals (CI)) in NPPA for forested pixels
in the study area based on the three different correction methods. (1) Original, (2)
simple image fragmentation, (3) scene-based fragmentation and (4) pixel-based
fragmentation.
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classes to increase their dominance, and secondary classes to decrease their

dominance at successively coarser resolutions; (b) modulations of this effect related

to the spatial organization of the classes in the landscape and (c) the effects caused

by the mixing of class spectra from the surface via the atmosphere to the sensor.

Moody (1998) found that coarse-resolution data consistently overestimated

biophysical variables compared with 30 m Landsat TM imagery. However, in

that study Landsat TM imagery was used to generate the coarse-resolution imagery

to ensure coincident imagery acquisition. As a result, significant spatial averaging

was required to generate coarse imagery from the original Landsat TM 30 m cells,

which may not represent the coarse-scale estimates of landscape conditions.

A unique aspect of this study was that we used coincident 20 m and 1 km

imagery from the SPOT VEGETATION and XS instruments, providing an

important dataset to examine this scaling issue. Issues of differences in vegetation

condition and structure, satellite position and sun angle can be ignored when using

coupled data from SPOT-4 making these results more robust than those from TM-

and AVHRR-driven data examples (Moody 1998). Like the Moody (1998) study,

we found that a potential exists in the overestimation of variables (using 1 km

resolution data) which are used to drive bio-physical models compared with 20 m

XS imagery.

Previous studies have estimated the sensitivity of ecosystem and climate models

to errors caused by fragmentation and scaling area estimates (Moody and Woodcock

1994, Moody 1998). These errors can lead to biases in model parameterization and

simulated results, increasing uncertainty in model predictions above that inherent to

the model itself. Our results support the concept that sub-pixel fragmentation

significantly alters coarse-scale predictions. We found that predictions of fPAR

could vary by as much as 45% of the ‘true’ value for coarse pixels with two distinct

land-cover classes (figure 10). The degree of bias in the predictions, whilst large, is

comparable with the estimates predicted by Chen (1999) and Moody (1998). In

the 3-PG model, fPAR is the scaled variable based on remote sensing observations.

It is possible for a variety of other variables to be tested similarly, including

temperature, vegetation class and leaf area index.
As the complexity of each correction method increases, the generality of

application may go down. The first technique (simple image fragmentation), whilst

the most crude, provides a general indication of the required adjustment of 1 km

NDVI values to more accurately reflect the fine-resolution values. This regression

equation could be developed for a region or from a number of selected pooled

scenes and used without further calibration. In the second method (scene-based

fragmentation) the XS image scene may not necessarily be required to predict the

amount of forest fragmentation as it could be broadly estimated from land-cover

mapping or from a number of different satellite or mapping sources. In the final

method (pixel-based fragmentation), both the 1 km (VEGETATION) and the 20 m

(XS) scenes are required in order to derive figures 3 and 6.

The mean NPPA of the study area using the three correction methods is

significantly different from the original, uncorrected modelling approach, with

results showing the effect of fragmentation occurring at very fine scales over the

60 km660 km study area. Figure 10 indicates that significant pixel-based varia-

tion does occur over the study area with variation by as much as 100% of the

836 N. C. Coops et al.



uncorrected values over long forest edges and regions with significant forest–

agriculture boundaries.
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