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ABSTRACT: Time series analyses of a 22-yr record of satellite observations
across the northern circumpolar high latitudes were conducted, and trends in
vegetation photosynthetic activity were assessed using a series of statistical
tests. The results indicate that most of the northern circumpolar high latitudes
(>85%) showed no significant trend in vegetation activity despite systematic
climate warming during the period of analysis. Of the areas that did change,
many showed the expected trends in “greening” of vegetation activity. There
were, however, significant differences in the magnitude and even in the direc-
tion of trends when stratified by vegetation type and density. Tundra areas
consistently and predominantly showed greening trends. Forested areas showed
declines in activity (“browning”) in many areas, and these were systematically
higher in areas with denser tree cover—whether deciduous or evergreen,
needle- or broad-leafed. The seasonality of the trends was also distinct between
vegetation types, with a divergence in trends between late spring and early
summer (positive) versus late summer (negative) portions of the growing sea-
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sons in forested areas. In contrast, tundra and other predominantly herbaceous
areas showed positive trends in all portions of the growing season. These
results confirm recent findings across the high latitudes of North America and
are supported by an increasing array of in situ measurements. They indicate
that the boreal forest biome might be responding to climate change in previ-
ously unexpected ways, and point to a need for an expanded observational
network, additional analysis of existing datasets (e.g., tree rings), and improve-
ments in process models of ecosystem responses to climate change.
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1. Introduction
Since 1981, the time series observations of vegetation activity from the Ad-

vanced Very High Resolution Radiometers (AVHRR) on board National Oceanic
and Atmospheric Administration (NOAA) spacecraft have been critical for global
change research. In particular, the composite normalized differenced vegetation
index (NDVI) data have been widely used to document widespread increases in
photosynthesis (“greening”) in many parts of the world (Myneni et al. 1997; Zhou
et al. 2001; Slayback et al. 2003). Such changes have been associated with modi-
fication of the global carbon cycle (Keeling et al. 1996; Nemani et al. 2003). Two
recent studies, however, have described declines in photosynthetic activity across
the northern extratropics generally, and above 50°N especially, despite increasing
temperatures (Angert et al. 2005; Goetz et al. 2005). Over the period 1981–2003
large areas of boreal forest experienced little change, but many others displayed
decreasing photosynthetic activity (“browning”). Tundra areas, in contrast, almost
exclusively underwent greening, as had been suggested by the earlier studies.
Model analysis indicates that the boreal forest browning might be due to tempera-
ture-related water stress in the later part of the summer, which offset photosyn-
thetic gains made in the early part of the summer (Angert et al. 2005). This is
supported by analyses of seasonal climate variables and photosynthetic activity in
Canada that show evergreen coniferous forest responding positively to higher
spring minimum temperatures while tundra areas respond to summer maximum
temperatures (Bunn et al. 2005).

In the high latitudes, warming is generally thought to increase plant activity and
subsequently increase terrestrial carbon storage (Cox et al. 2000; Dufresne et al.
2002). Indeed, documenting and characterizing high-latitude carbon storage pat-
terns in response to climate variability are seen as crucial to understanding the
global carbon budget (Gorham 1991; Bonan et al. 1992; Myneni et al. 1995). The
recent documentation of photosynthetic activity at high latitudes has not, however,
made full use of the spatial extent (Goetz et al. 2005) or resolution (Angert et al.
2005) of the AVHRR–NDVI record. Nor has recent analysis adequately made use
of ancillary data derived from remote sensing that might help interpret patterns in
the trends by land-cover type or vegetation density.

Cover type and the proportion of plant functional types (e.g., herbaceous and
woody) provide a quantitative, biophysical framework to interpret photosynthetic
trends. Our objective in this paper was to characterize circumpolar trends (above
50°N) in vegetation activity by vegetation type and density over the entire growing

Earth Interactions • Volume 10 (2006) • Paper No. 12 • Page 2



season (May–August) as well as the early (May and June) and late portions (July
and August) of the growing season separately.

2. Study area and data
We considered all land surfaces above 50°N in this study except the glaciated

areas of Greenland. This encompasses approximately 3400 × 106 ha, about three-
quarters of which is located in Russia and Canada (1800 and 1000 × 106 ha,
respectively). We used three primary datasets derived from polar-orbiting
satellites: 1) a time series of AVHRR–NDVI from 1982–2003, 2) vegetation
density from the vegetation continuous fields product derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor, and 3) the global
land-cover classification for the year 2000 (GLC2000) derived from the SPOT4
VEGETATION sensor. Links to the datasets used are provided in Table 1.

The AVHRR–NDVI data were produced as part of the NASA Global Inventory,
Monitoring and Modeling project (GIMMS version-G). This recent product has
been calibrated to account for orbital drift, cloud cover, sensor degradation, and the
emission of volcanic aerosols (Brown et al. 2004; Tucker et al. 2006). Spectral
vegetation indices like the NDVI have been used to estimate a wide range of Earth
surface variables since early field work in controlled experiments (Richardson and
Wiegand 1977; Tucker 1979), particularly the fraction of photosynthetically active
radiation absorbed by green vegetation (Fpar) and leaf area index (LAI; Asrar et
al. 1984; Spanner et al. 1990; Goel and Qin 1994). Temporally integrated NDVI
has been shown to be closely related to annual biomass production in herbaceous
vegetation (Tucker et al. 1981; Asrar et al. 1985; Daughtry et al. 1992), and it has
been suggested that this extends across vegetation types (Field 1991) despite
differences in respiratory costs (Ryan et al. 1997; Goetz and Prince 1998). At these
coarse spatial scales (64 km2 cells) and short temporal scales (15-day composite
images), NDVI appears to be most closely related to gross photosynthesis (Pg)
rather than net production (Sellers 1987; Myneni et al. 1995; Goetz and Prince
1999; Turner et al. 2003). Thus, we scaled the NDVI data between the 5% and
95% percentile values and used a linear transform of NDVI to relative Pg ranging
from zero to one (0–1) (Goetz et al. 2005). These data, and all spatial data in this
study, were transformed to a stereographic polar projection based on the Clarke
1866 spheroid, with units in meters.

Table 1. Primary datasets used.

Dataset
Nominal spatial

resolution Original projection* Available online

GIMMS–NDVI
Version-G

8 km × 8 km Albers Conical Equal
Area

http://glcf.umiacs.umd.edu/data/gimms/

MODIS VCF* 500 m × 500 m Goode’s Homolosine http://glcf.umiacs.umd.edu/data/modis/vcf/
GLC2000 Land Cover

Map**
∼1 km × 1 km Geographic http://www-gvm.jrc.it/glc2000/

* All datasets were reprojected to a stereographic polar projection by resampling via cubic convolution for
the GIMMS and MODIS VCF datasets and nearest-neighbor assignment for the GLC2000 dataset.

** Resampled to 8 km × 8 km as described in the text.
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Proportional estimates of Earth surface cover for two broad categories of plant
functional types (i.e., trees and herbaceous plants) as well as nonvegetated cover
(i.e., bare ground) were obtained using the MODIS Vegetation Continuous Fields
(VCF) datasets. These data have global coverage at 500-m resolution and have
been validated in a range of environments (M. C. Hansen et al. 2005; but also see
Defries et al. 2000; M. C. Hansen et al. 2002a,b). Each 500-m pixel contains the
proportion of woody vegetation, herbaceous vegetation, and bare ground cover as
estimated using 32-day composites of MODIS observation from 2000 and 2001.
These three cover types sum to one (100%) for each grid cell location. Both the
MODIS–VCF and the GIMMS–NDVI data are available from the Global Land
Cover Facility (Table 1).

Land-cover data were obtained from the GLC2000 from the Joint Research
Center (Bartalev et al. 2003; Latifovic et al. 2004). The classification was pro-
duced using 14 months of daily imagery from the VEGETATION instrument on
board the SPOT4 satellite. The period covered by the daily imagery was from
November 1999 through December 2000 and the spatial resolution was 1 km.
Land-cover classifications were performed for different sections of the globe sepa-
rately and combined into a single cohesive image. We compared the GLC2000
map to other land-cover maps, including the MODIS land-cover product [Inter-
national Geosphere–Biosphere Program (IGBP) schema available at http://glcf.
umiacs.umd.edu], and found them to be well correlated at the class level. This was
consistent with the recent findings of Giri et al. (Giri et al. 2005). For our purposes,
however, the products were qualitatively similar for North America but differed
substantially in Russia, particularly in terms of the extent of needle-leaved de-
ciduous tree cover. The differences result largely from the percent of tree cover
necessary for a “forest” classification. The GLC2000 classification scheme allows
an area to be classified as forest with as little as 10% of the pixel occupied by trees.
These wide expanses of low-density needle-leaved deciduous forest over eastern
Russia are consistent with other forest cover maps that show vast expanses of
“sparse larch” that correspond well with the GLC2000 map (Nikolauk 1973;
Aksenov et al. 2002). Although classifying areas with very low density of trees as
forest contains obvious pitfalls for some applications, for example, carbon process
modeling, the incorporation of the tree density data from the MODIS VCF allowed
us to determine the proportion of forest in a given cell and stratify the AVHRR
time series analysis, described below, by both vegetation cover type and density.

3. Data processing and statistical modeling

A time series (yt) of mean growing-season Pg was calculated for each cell from
1982 to 2003 (1981 was not used because no data exist prior to July 1981). We
defined the growing season as May to August in this study but also analyzed early
and late growing season periods. The definition of the growing season is somewhat
subjective over such a large extent and varied terrain. For the analysis reported
here, we selected a May to August window for two reasons: 1) the GIMMS dataset
contains many no-data values at high latitudes for all periods prior to May and
after August, making unbiased average growing season problematic to calculate;
and 2) instrumental field measurements of canopy light harvesting (i.e., Fpar) in
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interior Alaska (63°50�N, 145°30�W) from 2002 to 2005 indicate the onset of
boreal forest green-up in early May followed by rapid senescence after August
(Steinberg et al. 2006). We further divided the growing season into early (May–
June) and late (July–August) periods and then analyzed all three characterizations
of the growing season trends.

Each time series (yt) was tested to determine if a significant deterministic trend
existed over the time period (t) 1982–2003 (yt = � + �t + �t; t � 1,2,3, . . . , T;
H0: � � 0; H1: � � 0). If a significant trend (p � 0.05) was detected, then the
slope (�) was extracted for the grid cell. We used three separate statistical tests to
assess the significance of trends in Pg: Augmented Dickey Fuller (ADF) tests
(Dickey and Fuller 1981), a nonparametric trend test (Siegel and Castellan 1988),
and Vogelsang’s t-PST stationarity test (Vogelsang 1998; Fomby and Vogelsang
2002). All three of these tests have been used previously to assess trends in the
AVHRR–NDVI data, and we refer readers to the aforementioned papers by Goetz
et al. (Goetz et al. 2005) for information on the ADF tests and Vogelsang test, and
Angert et al. (Angert et al. 2005) for an application of a nonparametric trend test.
We found similar broad-scale patterns between all three trend tests (see the ap-
pendix) and elected to use Vogelsang’s t-PST stationarity test for the remainder of
the study. The Vogelsang test is robust to spurious trends that might result from
strong serial correlation in the time series and does not overreject the hypothesis
of no trend when the serial correlation is strong, or if there is a unit root (or near
unit root) in the errors (as some autoregressive modeling approaches do; Vogel-
sang 1998). Finally, the Vogelsang test does not require estimates of nuisance
parameters stemming from uncertainty in the correlation structure of the data
(Vogelsang 1998; Fomby and Vogelsang 2002).

The slopes (�) of significant time series (May–August, May and June, and July
and August, separately) were modeled as a function of land cover and vegetation
density using the GLC2000 map and the MODIS VCF described above. Both the
predictor datasets required resampling, however, because of the finer spatial reso-
lution as compared to the 64-km2 resolution of the AVHRR data (Table 1). For the
land-cover dataset, the most common cover type occurring in the 64-km2 window
was derived along with the number of different land-cover types present. The mean
and standard deviations of the proportional vegetation types that occurred within
each 64-km2 grid cell were retained for use with the MODIS VCF datasets.

Slopes were modeled as a function of vegetation proportion and land cover.
Specifically, all the significant slopes (�) were modeled as a function of the mean
and standard deviation of the proportion of percent tree, percent bare, and percent
herbaceous cover as well as the most common land-cover type and the variety of
land-cover types present in each cell. We used a variety of exploratory data
analyses (see section 5), and predictive models were built with ensembles of
regression trees using Breiman and Cutler’s random forests (RF) ensemble pre-
diction method (Breiman 2001; Liaw and Wiener 2002). In the RF algorithm,
many regression trees (typically hundreds) are constructed using different random
samples of the data. Unlike most regression tree analysis, splits at each node are
chosen from a randomly selected subset of all the available predictors at each node.
The results are then aggregated, placing this technique in the family of bootstrap
aggregation or “bagging” approaches to machine learning (Breiman 1996). Like
other decision tree approaches, the RF algorithm can be used with mixed categori-
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cal and continuous data—even highly correlated variables like the VCF compo-
nents. Unlike some of the other ensemble approaches, for example, stochastic
gradient boosting (Lawrence et al. 2004), the RF approach has two advantages.
First, the RF algorithm requires only two parameters: the number of regression
trees to grow and the number of variables to try at each split (Breiman 2001). The
first parameter can be easily met with sufficient computing time and the second
parameter is largely insensitive (Liaw and Wiener 2002). Second, model error is
quantified with respect to the out-of-bag (OOB) error estimates. The OOB data are
the portion of the data not drawn into the sample at each bootstrap iteration and
provide an unbiased estimate of error. More specifically, the OOB data are the
one-third of the input data that is randomly excluded from the construction of each
of the trees, and that one-third is a different random selection for each tree. This
allows the full dataset to be used and data need not be withheld for validation.
(Liaw and Wiener 2002; Lawrence et al. 2006). The wide spatial distribution of the
areas with significant trends largely precludes issues of spatial autocorrelation in
performing the bootstrapping as the random samples are selected from the entire
dataset. We grew 200 regression trees in our model runs, although error rates
stabilized well before this number, and chose two random variables at each split
for the results described below. The importance of each predictor variable was
calculated by recording the mean-square error (sum of squared residuals divided
by the number of observations) on the out-of-bag data for each tree and repeating
that calculation after permuting each variable. The differences were averaged and
normalized by the standard error giving an importance measure ranging from 0%
to 100%. All analysis was done with the randomForest package (Liaw and Wiener
2002) in the R programming environment (R Development Core Team 2005).

4. Results

Approximately 2300 × 106 ha (68%) of the study area had sufficient satellite
data to perform a trend analysis in the May–August window (all results are re-
ported using the Vogelsang trend test; see the appendix). Fifteen percent of the
individual time series grid cells, approximately 337 × 106 ha, showed significant
trends in Pg, with 82% of the detected trends showing greening (Figure 1; Table
2). In many places the transition from areas of no significant slope to areas of
positive slopes was associated with the ecotone into tundra vegetation or wetlands,
while the areas of negative trends were almost exclusively in interior forests
(Figure 2).

The majority of detrended 22-yr time series slopes registered neither greening
nor browning for the May–August period. That observation held for the early
period (May and June) and the late period (July and August) as well, but the
proportion of positive to negative slopes changed, with browning occurring in
approximately 136 × 106 ha during the July and August period as opposed to 36
× 106 ha in the earlier window (Table 2). Areas browning in the July and August
window were largely confined to areas of interior forest in both continents,
whereas tundra areas retained positive slopes (Figure 3). The spatial patterns of the
significant slopes in May–June were similar to the entire growing season (May–
August), but the slopes were steeper in the early period.
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Figure 1. (top) Spatial distribution of significant deterministic trends in May–August
photosynthetic activity from 1982 to 2003. The samples are colored ac-
cording to the magnitude of the slope over time with greening areas
shown in red and yellow and browning areas shown in shades of blue.
Strongly negative regions are equivalent to a deterministic trend � ≤
−0.005, negative regions −0.005 < � ≤ −0.0003, near zero −0.0003 < � ≤
0.0003, and not significantly different than zero; positive 0.0003 < � ≤ 0.005;
and strongly positive � ≥ 0.005. (bottom) A false color composite of the
MODIS VCF data and the GLC2000 land cover are shown for illustration of
the distribution of trends.
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Figure 2. The trend map for May–August is shown with higher-resolution imagery
from Landsat (30 m × 30 m cells) underlying three locations with charac-
teristic trend patterns. Areas with significant trends are showing through
while insignificant trends are opaque. The trends are colored according to
magnitude as in Figure 1. (top left) The widespread greening occurring on
the tundra areas north of the Brooks Range in Alaska (the mountains
themselves show no significant trends). (top right) Negative trends in the
interior forests of Russia. (bottom) A transition from positive to negative
trends as a boundary from forest to wetlands is crossed.

Table 2. Areas of time series models of significant trends in Pg for three time win-
dows. Percentages do not sum to 100% due to rounding.

May–August × 106 ha May–June × 106 ha July–August × 106 ha

No trend 2037 (86%) 2099 (88%) 2450 (86%)
Positive trends 277 (12%) 261 (11%) 255 (9%)
Negative trends 60 (3%) 36 (2%) 136 (5%)
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These observations of different spatial patterns in the significant trends are
supported by exploratory data analysis of the trend distribution by land cover and
vegetation density as well as the ensemble regression tree models. The slope
distributions (Figure 4) show that the major forest cover types tended to increase
in greenness in the early part of the growing season and brown in the later half of
the growing season, over the 22-yr record, while the tundra vegetation types
greened during both halves of the growing season. For instance, the median values
for significant slopes classified as “herbaceous” were positive in the early and late
summer period while the median values for significant “needle-leaved evergreen”
slopes shifted from positive to negative between the early and late summer periods.
The exception to that pattern for the major forest types was needle-leaved decidu-
ous forests, which had positive median slope values in both halves of the growing
season. When the forest types were stratified by percent tree cover, then substantial
areas of positive slopes in the second half of the growing season occurred only in
the sparsest forests. The densest forests (>66% tree cover) had 3 to 10 times as
many negative trends as positive trends in all three forest classes in July and
August. Large areas of negative slopes, however, persisted in the sparsest (<33%
tree cover) needle-leaved evergreen and broad-leaved deciduous forests (Figure 5).
All the forest types showed a much greater proportion of greening slopes in the
May–June window.

The randomForest models of trends (slopes) as a function of land cover and
vegetation density were able to explain 48.3% of the variance using the out-of-bag
error estimates in the May–August window. The models were able to explain only

Figure 3. Spatial distribution of deterministic trends in photosynthetic activity from
1982 to 2003 for the early and late period of the growing season. Trends
are colored according to magnitude as in Figure 1. Cities and rivers are as
indicated in Figure 1.
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28.3% of the variance in the first half of the growing season but 58.8% in the
second half of the growing season. In all of the models land cover was the most
important predictor variable in terms of the percent increase in mean-square errors
(Figure 6). The percentage of tree cover was the second most important variable.

5. Discussion

The high latitudes have been warming substantially in recent decades (Easter-
ling et al. 2000; Chapin et al. 2005; J. Hansen et al. 2005). It is generally thought
that this warming will induce vegetation growth. In our analysis more than 85% of
all areas show no significant trend in Pg over the 22-yr period since 1981 (Table
1), and the significant trends have distinct spatial patterns that correspond strongly
to land cover (Figures 1 and 2). These observed trends in photosynthetic activity,
as captured in the satellite data record, support previous analyses of greening in

Figure 4. “Violin” plots show the distribution of significant slopes (x axis) for the time
series models for (top row) major forest type and (bottom row) the major
categories of low growing vegetation. Each panel is stratified by growing
season window (y axis), and areas of either positive or negative slopes
are shown as text in each panel in millions of hectares (106 ha). Violin plots
are combinations of a box plot with rotated kernel density plot added to
each side of the box plot (Hintze and Nelson 1998). Gaussian kernels were
used with the bandwidth determined empirically using a bandwidth se-
lector with a factor of 1.06 (Scott 1992).
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tundra vegetation, and enhance our understanding of the associations between
trends in Pg, vegetation density, and cover type.

We used a robust series of trend tests to determine areas of significant greening,
that is, positive trends in Pg from 1982 to 2003, and of significant browning—
areas of decreasing photosynthetic activity. Because trend detection in biophysical
systems requires consideration of autocorrelation and stationarity, we used three
separate methods for assessing trends that have all been previously used on the
AVHRR–NDVI data. The three trend tests produced the same general spatial
patterns of greening and browning (see the appendix). The similar results across
tests provide confidence in the robustness of the trend analysis. We emphasize the
most conservative results, those from the Vogelsang test, although the conclusions
of the study are consistent across all the trend tests.

Overall, tundra areas show marked greening over the entire May–August grow-
ing season, and indeed, the transition into tundra was typically delimited by a
change in the time series from no significant trend to significant positive trends
(Figure 2). This relationship held over all the time windows considered—tundra
vegetation was almost exclusively greening in both the early and late growing
season. These patterns were consistent with relatively simple climate response
seen in a previous study across Canada (Bunn et al. 2005). In that study, tundra

Figure 5. The distribution of significant slopes (x axis) for the time series models for
(top row) the early part of the growing season and (bottom row) the later
part of the growing season by forest type (columns). Each panel is further
stratified by forest density (y axis), and areas of either positive or negative
slopes are shown as text in each panel in millions of hectares (106 ha).
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areas responded to summer maximum temperatures while the response of forest
vegetation was more complex—generally relating to spring temperature and
precipitation variables often from the previous year. The greening trends in
tundra areas might also be associated with a lengthening of the growing season,
and associated extension of the snow-free period, but characterizing phenology
with the composited AVHRR–NDVI is limited by the compositing intervals
(15 days) required to minimize the influence of clouds and other factors that
modify the response to vegetation activity. The incidence of snow during
the growing season would impact our results only if there were a systematic
trend in snow cover over the time period we analyzed within the May–August
growing season, which has not been the case (Brown 2000). Furthermore, analyses
of the timing of snowmelt and vegetation activity represented by the NDVI
confirm that these variables are nearly perfectly inversely related across a range
of boreal forest sites (Delbart et al. 2005). Shrub expansion in response to climate
across much of Alaska’s tundra provides a separate line of evidence that supports
the greening trends. Shrub density and area are rapidly expanding in Alaska
in response to both summer temperatures and a positive feedback where increased
shrub growth leads to increased snow-holding capacity, which, in turn, leads
to increased microbial activity further facilitating growth (Sturm et al. 2001,
2005).

Boreal forest areas, in contrast, responded differently than tundra in both North
America and northern Eurasia. Over the entire May–August growing season
length, the trends in interior boreal forests were either balanced in terms of positive
and negative Pg trends (e.g., needle-leaf evergreen forests showed approximately

Figure 6. Variable importance plots for the randomForest models are shown for
each time period (May–August, May and June, and July and August). The
rows are sorted in order of mean increasing importance for all three time
periods.
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27 × 106 ha greening and 23 × 106 ha browning; see Figure 4) or show a modest
greening trend (e.g., needle-leaved deciduous and broad-leaved deciduous forests).
Most forest areas showed significant greening trends in May and June, but our
results indicated widespread evidence of reduced Pg (browning) in July and Au-
gust. This pattern led a previous modeling study to conclude that large net pho-
tosynthetic gains are being made in the springtime in the northern extratropics that
are then offset by net photosynthetic losses later in the summer (Angert et al.
2005).

These gross trends in greening or browning are, however, dependent not only on
cover type (Figure 4) but also the underlying vegetation density (Figure 5). Areas
of sparse tree cover (evergreen and deciduous) showed greening in July and
August as well as May and June. In the needle-leaved deciduous class, some 40.6
× 106 hectares of low-density “forest” were greening in a manner similar to the
tundra vegetation that dominates this cover type. In contrast, more densely forested
areas consistently displayed negative trends, particularly in late summer.

The boreal forest biome is ostensibly a temperature-limited ecosystem; the
growing season is short and the winter is long and severe. The latitudinal tree line
at global scales is related to minimum temperature, and tree line advance into
tundra has been extensively documented (Lloyd 2005). Why then would rising
temperatures result in declining gross photosynthesis in boreal forests? Pro-
nounced warming has already occurred at high northern latitudes over the last
half-century (Easterling et al. 2000), and Arctic summers are now warmer than at
any other time in the last 400 yr (Overpeck et al. 1997). From 1954 to 2003, high
northern latitudes warmed by as much as 2°–3°C (ACIA 2004), and the rate of
warming has increased in recent decades: high latitudes warmed at the rate of
0.15°–0.17°C decade−1 between 1961 and 1993 (Chapman and Walsh 1993), and
might be increasing as much as to 0.3°–0.4°C decade−1 through 2004 (Chapin et
al. 2005). Despite some evidence for an overall increase in precipitation (Serreze
et al. 2000), there is also evidence for evaporative drying in the Arctic, suggesting
that seasonal drought conditions to which the vegetation are not well adapted
might prevail in these high-latitude ecosystems (Yoshikawa and Hinzman 2003;
Dai et al. 2004). Summer drought stress can be induced by both lower local
precipitation as well as increased evapotranspiration demands driven by the in-
creases in temperature. The key to the lack of widespread increases in boreal forest
growth and its decline over large areas is, we hypothesize, likely due to tempera-
ture-induced drought stress expressed as vapor pressure deficit limiting boreal
conifer photosynthesis. This observation is supported by CO2 flux measurements
of boreal conifers (Jarvis et al. 1997), longer-term changes in allocation across
boreal tree species (Lapenis et al. 2005), and studies conducted using tree-ring
proxies of tree growth. The latter document negative correlations between summer
temperatures and ring widths associated with summer drought (Barber et al. 2000;
Lloyd and Fastie 2002; Wilmking et al. 2004).

An alternate explanation that might lead to negative trends in boreal forest Pg
is fire, as burned area frequency has been increasing over the last 20 yr (Achard
et al. 2005; Mouillot and Field 2005). Analysis of fire disturbance was not con-
ducted in the current analysis owing to the lack of reliable burned area assessments
over the entire record (Sukhinin et al. 2004) but a related study of boreal North
America (Goetz et al. 2005), for which detailed burned area maps were available,

Earth Interactions • Volume 10 (2006) • Paper No. 12 • Page 13



showed that fire was not associated with negative Pg trends. Instead, temporal
trends in the burned area were predominantly stochastic, as would be expected
except for areas disturbed at the beginning of the time series.

These results, and earlier work that led to this analysis (Goetz et al. 2005), were
initially surprising to us given the abundant indications of Northern Hemisphere
greening and increased productivity in recent decades (Myneni et al. 1997; Zhou
et al. 2001; Nemani et al. 2003; Slayback et al. 2003). Our results indicate that the
majority of the northern high latitudes have not consistently increased in Pg over
the record and indeed Pg has declined in many forested areas. There is emerging
evidence that the productivity of high-latitude forests might decline with climate
warming due to drought (Angert et al. 2005), transitions in species composition
(ACIA 2004), and other factors (see Goetz et al. 2005). It is not yet certain that
these trends will continue as climate continues to warm in these high latitudes, or
if other surprises might modify the feedback mechanisms between vegetation and
the atmosphere. Recent analyses of boreal tree-ring records indicate the potential
of merging the extensive dendrochronology network with the satellite observa-
tional record (Kaufmann et al. 2004), which would help to place these results into
a longer-term context. It would also provide insight into potential limitations of
ecosystem process models that, until recently, have missed these apparent bio-
spheric responses to climatic change.
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Appendix

Alternate Trend Tests
We performed three separate trend tests, as described in section 3 above: a

nonparametric trend test (Siegel and Castellan 1988), the Augmented Dickey
Fuller (ADF) test (Dickey and Fuller 1981), and Vogelsang’s t-PST stationarity test
(Vogelsang 1998; Fomby and Vogelsang 2002). Each test has been used in various
applications, and different analysts describe their relative strengths and weak-
nesses elsewhere. All are somewhat limited by the relatively short segment length
of the AVHRR–NDVI time series (22 yr), but each captured the same general
spatial pattern for significant trends (Figure A1). We elected to focus on the results
of the Vogelsang test for the analysis reported in the main text because it has been
shown to be robust to spurious trends that result from serial correlation and does
not overreject the hypothesis of no trend (Vogelsang 1998; Fomby and Vogelsang
2002). The areas identified as showing deterministic greening and browning trends
vary somewhat depending on the test used, primarily with the level of significance
rather than with the location or direction of the identified trends (Figure A1). The
overall results of the analysis, in terms of the relative proportion of significant
positive or negative trends in different land cover types and vegetation densities,
do not change with the test used.
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Figure A1. The spatial distribution of significant deterministic trends in May–August
photosynthetic activity from 1982 to 2003 for the three trend detection
tests used. (top) The Vogelsang test, which was used for the analyses
described in the main body of the paper. (bottom) The nonparametric
trend test and the ADF are shown for comparison. The samples are col-
ored according to the magnitude of the slope over time with greening
areas shown in red and yellow and browning areas shown in shades of
blue. Strongly negative regions are equivalent to a deterministic trend
� ≤ −0.005, negative regions −0.005 < � ≤ −0.0003, near zero −0.0003 <
� ≤ 0.0003, and not significantly different than zero; positive 0.0003 <
� ≤ 0.005; and strongly positive � ≥ 0.005.
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