It’s a big idea—a pan-Arctic monitoring network for permafrost emissions—but big ideas are exactly what The Audacious Project was created to foster.
This April, Woodwell Climate Research Center was awarded 41.2 million dollars through Audacious to not only build such a network, filling gaps in our understanding of how much carbon is released into the atmosphere from thawing permafrost, but also to put research to work shaping policy and helping people.
The new project, called Permafrost Pathways, combines scientific prowess from Woodwell with policy, community engagement, and Indigenous knowledge from the Arctic Initiative at Harvard Kennedy School’s Belfer Center for Science and International Affairs, the Alaska Institute for Justice (AIJ), and the Alaska Native Science Commission.
Carbon emissions from permafrost thaw are one of the biggest areas of uncertainty in global climate calculations. Thawing permafrost is expected to release between 30 and 150 billion tons of carbon by 2100, the higher estimates on par with or even exceeding the United States’ cumulative emissions if allowed to continue at current rates. Yet permafrost is not accounted for in carbon budgets and international agreements. Permafrost Pathways will develop more complete data on permafrost carbon and deliver that research into the hands of those poised to decide how we deal with the warming Arctic.
Permafrost Pathways is led on the Woodwell side by Arctic Program Director Dr. Sue Natali and Associate Scientist Dr. Brendan Rogers, who have both been researching permafrost carbon for years. Dr. Natali found her way to the Arctic through a desire to work in a place significant to the global carbon story. The rapid changes she has witnessed in the past decade have underscored the Arctic as ground zero for climate change.
“I’ve seen dramatic changes from one year to the next in the places where I work, and Arctic residents have been observing these changes for decades,” Dr. Natali says. “You can measure something one year and then the ground there collapses the next. The physical changes across the landscape are really startling to see.”
Drs. Natali and Rogers have seen eroded hillslopes, research trips abandoned due to wildfire, community meetings with Arctic residents whose homes are sinking—every experience reinforced the fact that there was still much more to learn about how thawing permafrost feeds into climate change and is impacting Arctic communities.
The Audacious grant will allow Drs. Natali and Rogers to pull together the threads of their prior research into a project that starts to tackle the issue on a grander scale.
“When you’re focused on individual problems or hypotheses, you’re not able to really think big about something like monitoring across the Arctic,” says Dr. Rogers. “Opening up a funding source like this lets you think at a scale that matches the problems we face.”
The project is thinking really big, with the goal of installing 10 new eddy covariance towers—structures with instruments that measure carbon flux—in key areas where data is currently lacking. Pathways will also maintain existing key towers that would otherwise be decommissioned, and augment others to measure carbon fluxes year-round.
“There are a lot of existing towers that are either not running through the winter, or they’re not measuring methane, or they’re on hold for instrumentation upgrades or lack of funding,” Dr. Natali says. “We will get even more new data by maintaining old towers than constructing new ones.”
In parallel, Woodwell will work with a team at University of Alaska Fairbanks to develop a novel permafrost model that fully harnesses the data, accounting for important but currently neglected processes, and ultimately delivers more accurate projections of permafrost emissions to inform policy makers and Arctic communities.
While the science team ramps up new data collection, AIJ will be breaking down the issue of adaptation. The Arctic is warming faster than anywhere else on Earth, and it is not waiting for exact measurements to make the consequences known.
The land upon which many Alaska Native communities are located is destabilizing in the face of usteq—a Yupik word for the catastrophic ground collapse that occurs when thawing permafrost, erosion, and flooding combine to pull the ground out from under them. In many places the formerly solid cornerstones of villages—houses, roads, airports, cemeteries— have had to be picked up and moved to more stable ground.
“It is an awful, awful decision that communities are being faced with because the land on which they’re living is becoming uninhabitable,” says Executive Director of AIJ, Dr. Robin Bronen.
On top of the trauma of watching their villages sink into the Earth, there is no clear path for Arctic communities deciding they must completely relocate.
“It’s become painfully clear that we in the United States have no institutional or governance structure to facilitate this type of movement of people,” says Dr. Bronen. There is no standardized way for people displaced by the climate crisis seeking resettlement to apply for funding and technical assistance for a community-wide relocation.
“If policy changes aren’t made nationally, then a lot of communities in the United States are going to be experiencing this incredible disconnect between making the decision that they are ready to leave, but having no resources to implement that decision,” says Dr. Bronen.
Permafrost Pathways will be working with Arctic residents to help them adapt to their rapidly shifting landscape. Through AIJ and the Alaska Native Science Commission, the project will connect with communities, collaborate to generate data they can use in their decision making and, if they make the choice to move, work with them to secure the resources needed for relocation.
Permafrost Pathways isn’t the first to tackle these issues but, Dr. Natali says, it does represent a unique combination of expertise that could push forward both carbon mitigation and climate adaptation policies.
Leader of the Arctic Initiative, professor, and Senior Advisor to Woodwell’s president, Dr. John Holdren understands the value of connections in making lasting change; he has been speaking to top policy makers in the U.S. and abroad for much of his career.
“All of us at the Belfer Center have been linking science and policy for a long time and communication is important to that,” says Dr. Holdren. “In my view, it’s going to remain important to have personal connections at high levels.”
Working through these connections, Permafrost Pathways will put the project’s science into the hands of policymakers to impress upon them the issue’s urgency.
“All the news coming out about permafrost carbon has been bad news,” says Dr. Holdren. “I think what we are going to find is that the high estimates are much more likely to be right than the low estimates. We’ve got to get that factored into the policy process.”
For Dr. Natali, the most important outcome of Permafrost Pathways is a future in which the threats presented by permafrost thaw are taken seriously by governments.
“I want to see permafrost thaw emissions accounted for,” says Dr. Natali. “I want to see the national and international community actually wrestle with the effects of permafrost thaw and to take action to respond to the climate hazards.”
Dr. Rogers says he hopes the collaborative nature of this already-big project will have even larger, rippling effects— paving the way for new partnerships and policy change.
“There’s the critical work that we will be doing, and then there are the new doors that a project of this scope opens,” says Dr. Rogers. “And we aren’t reaching our end goal without those open doors.”
The Audacious Project is an initiative of the non-profit TED that funds large-scale solutions to the world’s most challenging problems. Every year, the Project selects a cohort of big ideas to nurture with funding and resources.
Tune in to PBS NOVA on February 2 to watch Arctic Sinkholes, an original documentary that explores the hidden dynamics of thawing permafrost and the emissions it releases. The documentary features Woodwell Arctic Program Director, Dr. Sue Natali, alongside other prominent climate scientists working to better understand how climate change is impacting the Arctic.
The film centers on the 2014 discovery of methane craters in the Arctic. These features of the landscape are formed as permafrost thaws, and trapped greenhouse gasses expand, pushing the soil up. When the pressure becomes too great, these bubbles of earth can explode suddenly, creating massive craters on the Arctic landscape and releasing a burst of atmosphere-warming gasses.
“There’s a lot of discussion about carbon dioxide and its relationship to climate, but the impact of
methane coming out of the Arctic is potentially enormous,” says NOVA Co-Executive Producer Julia Cort. “Making accurate predictions about the future depends on good data, and Arctic Sinkholes reveals what scientists have to do to get that data, as they try to measure an invisible, odorless gas that’s underground in some of the most remote and challenging environments in the world.”
To better understand the extent and significance of these craters, Dr. Natali and Woodwell Senior Geospatial Analyst, Greg Fiske, devised a method of mining satellite imagery data for key characteristics that would indicate a recent explosion. A sudden shift from vegetation to water, for example — often, craters quickly fill up with rain, becoming lakes that obscure their own origins.
Outgassing from the craters themselves represents only a small subset of the larger potential emissions from permafrost thaw. Current estimates show that thawing permafrost could contribute as much to warming this century as continued annual emissions from the United States.
Methane craters make evident the speed at which the Arctic is warming, and the changes permafrost thaw is causing on the landscape. In their research, Dr. Natali and Fiske uncovered other impacts of permafrost thaw— slumping ground, sinkholes, and coastal erosion are destabilizing the ground on which many Arctic communities are built.
“These abrupt changes that are occurring in this once-frozen ground are happening faster than we expected,” said Dr. Natali. “And that is not only going to accelerate warming, but also affect the lives of millions who make their home in the Arctic.”
Future research will work towards more precise estimates of permafrost thaw emissions and a better understanding of the changing Arctic.
Arctic Sinkholes premieres Wednesday, February 2, 2022 at 9pm ET/8C on PBS and will be available for streaming online at pbs.org/nova and on the PBS video app.
The Arctic has warmed twice as fast as the rest of the globe in the last two decades. In this region where the ground in some places is literally made of ice, rapid warming poses a serious threat to the lives, livelihoods and infrastructure of Arctic communities. A new review led by Dr. Gabriel Wolken from the University of Alaska, Fairbanks and Woodwell Associate Scientist Dr. Anna Liljedahl details the biggest hazards that could result—and in some cases already have—from permafrost and glacial thaw.
The paper was released as a special addition to the National Oceanic and Atmospheric Administration’s Arctic Report Card, an annual report on the status of the Arctic region. In it, the authors outline what we know, and the much larger gaps in our knowledge, about how thawing permafrost and melting glaciers are impacting Arctic communities.
Ice holds the Arctic together. An estimated 23 million square miles of land in the Northern hemisphere is permafrost, soil that traditionally stayed frozen solid year-round. When it begins to thaw, the land slumps, which can cause sinkholes, erosions, and landslides. Retreating glaciers can also destabilize mountain slopes. When collapsing glaciers or mountainsides fall into a nearby water body, they can set off a chain of cascading hazards, including outburst floods, debris flow, and even tsunamis.
Events like these have already been documented, with serious impacts on Arctic residents, yet research and monitoring of these hazards have been lacking.
“Houses are already collapsing, communities are already being impacted by permafrost thaw and having to adapt, including in some cases, to relocate. That’s been happening for a decade, at least, and it’s not getting the attention it should be,” says Woodwell Arctic Program Director Dr. Sue Natali, who also contributed to the Report Card.
And there is vast potential for unstable Arctic ground to have far-reaching global impacts. The collapse of an oil tank in Norilsk, Russia was partly attributed to the extremely warm conditions of 2020. Roads, pipelines, and shipping lanes are all at risk from thaw-related hazards.
“It’s not only affecting someone living near a glacier or on permafrost, it also extends farther than that,” Dr. Liljedahl says. “It includes national security. And we do not have broad-scale hazard identification and detection across the Arctic, or near real-time tracking of permafrost thaw and unstable slopes. We can do a lot more in utilizing the vast amounts of remote sensing imagery and observations made by people living in permafrost and glacier-affected landscapes.”
What’s desperately needed, Dr. Liljedahl says, are early warning systems that can alert residents of imminent threats, especially ones designed in tandem with the communities being affected. But, without more research and widespread monitoring of permafrost and unstable slopes, building such a system would be nearly impossible—akin to taking precautions against a volcanic eruption without knowing where the volcano is.
The behavior and rate of thaw is also likely to change as climate change progresses. Permafrost itself releases emissions when it thaws and that accelerates the warming process, increasing the urgency for the necessary systems to be put into place.
“The rate of hazard formation and the combined effects of these hazards is much higher than it has been in the past, which will make it more challenging to respond to without accelerated efforts to monitor and map these hazards, and develop cohesive response plans,” says Dr. Natali.
For the first two weeks of November, diplomats and scientists from around the world descended on Glasgow, Scotland for the United Nations’ 26th annual Conference of Parties—hailed by some as the “last, best, hope” for successful international cooperation on the issue of climate change. Woodwell sent three expert teams to push for more ambitious policies that integrate our understanding of permafrost thaw and socioeconomic risks, and for financial mechanisms to scale natural climate solutions. Here are their thoughts on the successes and failures of this pivotal meeting.
The conference started off with a bold promise from 100 nations to end deforestation by 2030, accompanied by a pledge of more than $19 billion from both governments and the private sector. Though similar pledges to end deforestation have failed in the past, the funding pledged alongside this one gives reason to be hopeful.
$1.7 billion of the funds are allocated specifically to support Indigenous communities, which Woodwell Assistant Scientist Dr. Glenn Bush believes is a big step forward, though creating policies that are equally supportive will be where the real work gets done.
“It’s particularly welcome that Indigenous peoples are finally being acknowledged as key protectors of forests. The real challenge, however, is how to deliver interlocking policies and actions that really do drive down deforestation globally and scale up nature-based solutions to climate change.”
Dr. Ane Alencar, Director of Science at IPAM Amazônia, said that, for Brazil, half of the solution could come from enforcing existing laws and designating public forests. The other half could come from consolidating protected areas, creating incentives for private land conservation, and providing technical support for sustainable food production.
Dr. Bush also presented the CONSERV project, a joint initiative between IPAM and Woodwell that provides compensation for farmers who preserve forests on their land, above and beyond their legal conservation requirements. Increasing the scale and financing of viable carbon market plans like CONSERV could be crucial in incentivizing greater forest protection.
During the second week of the conference, Woodwell released a summary report on a series of climate risk workshops with policymakers and climate risk experts from 13 G20 nations. These workshops, conducted in collaboration with the COP26 Presidency and the British government’s Science and Innovation Network, identified challenges to incorporating climate risk assessments into national-level policy, and the report made recommendations for moving from simply making the science available to making it useful for implementation. The report demonstrated a desire from policymakers to get involved in climate risk analyses early in the process, to ensure the information addresses a country’s particular needs.
One success of the conference was the creation of a new climate risk coalition, led by Woodwell. The coalition, composed of 9 other organizations, will produce an annual climate risk assessment for policymakers.
“Understanding the full picture of climate risk is incredibly important when you’re setting policy,” explained Woodwell’s Chief of External Affairs, Dave McGlinchey. “We also heard, however, that the climate risk assessments need to be designed with the policymakers who will eventually use them. This research must speak directly to their interests if it is going to be delivered effectively.”
The increased desire of policymakers to better understand and address oncoming climate risks demonstrates an important shift to viewing climate change as a present problem, rather than solely a future one.
One risk that still isn’t high enough on the COP agenda is rapid Arctic change, particularly permafrost thaw. The Cryosphere Pavilion, hosted by the International Cryosphere Climate Initiative, convened conversations ranging from the implications of permafrost thaw, to environmental justice for Northern Communities and respecting Indigenous knowledge and culture. For Arctic Program Director, Dr. Sue Natali, the Indigenous-led panels were some of the most impactful of the conference. But postdoctoral researcher Dr. Rachael Treharne noted that, no matter how well attended, there’s a difference between being in the Cryosphere Pavilion and being on the main stage.
Woodwell was among a group of organizations pushing to get permafrost emissions the attention it demands. Emissions released by thawing permafrost are currently not accounted for in national commitments, but are potentially equivalent to top emitting countries like the U.S. November 4 at the conference was “Permafrost Day” and each event was at full capacity for the pavilion, signaling growing attention to permafrost science. Woodwell, alongside a dozen polar and mountain interest groups called for even more commitment to the cryosphere conversation at the upcoming Subsidiary Body for Scientific and Technological Advice U.N. climate conference in Bonn scheduled for June of 2022.
Even with this greater recognition of the seriousness of Arctic climate change, the region and its people are being hit much harder and faster than the rest of the globe. Slow-moving decision-making and talk without follow-through will seriously endanger Arctic residents.
“I left the COP having a very hard time feeling ‘optimistic’, while knowing that the hazards of climate change are already severely impacting Arctic lands, cultural resources, food and water security, infrastructure, homes, and ways of living,” said Dr. Natali. “After repeated years of record-breaking Arctic wildfires, heatwaves, and ice loss, I’m not sure how a 1.5 or 2C warmer world—one in which we know that these events will only get worse—is a reasonable goal.”
Overall, however, the final Glasgow Climate Pact fell short of the ambitious action the world needs in order to limit warming. The deal made several last-minute compromises surrounding the phase out of fossil fuels. COP president Alok Sharma said that, while a future with only 1.5 degrees of warming is possible, it is fragile—dependent on countries keeping to their promises.
Despite this, McGlinchey says there was real progress at COP26. The conference reached a resolution that earned the unanimous agreement of all attending parties. The formal process has also begun to accelerate, with nations required to return with more ambitious climate mitigation plans next year, rather than on the previous five year timeline.
“We are not yet where we need to be,” McGlinchey said. “But we are better off than where we were two weeks ago. Let’s keep going.”
For the past five to ten thousand years, black spruce have been as constant on the boreal landscape as the mountains themselves. But that constancy is changing as the climate warms.
A recent study published in the Proceedings of the National Academy of Sciences, led by Dr. Jennifer Baltzer, Canada Research Chair in Forests and Global Change at Wilfrid Laurier University, found that shifts in wildfire regimes are pushing black spruce forests to a tipping point, beyond which the iconic species may lose its place of dominance in boreal North America.
Synthesizing data from over 1500 fire-disturbed sites, the study showed black spruce’s ability to regenerate after fire dropped at 38% of sites and failed completely 18% of the time—numbers never before seen in a species evolved to thrive after fire.
“They almost look like a Dr. Seuss tree.” says Dr. Brendan Rogers, an Associate Scientist at Woodwell and co-author on the PNAS study. He’s referring to the way black spruce are shaped—short branches that droop out of spindly trunks. Clusters of small dark purple cones cling to the very tops of the trees. Black spruce forests tend to be cool and shaded by the dense branches, and the forest floor is soft and springy.
“The experience of walking through these forests is very different from what most people are accustomed to. The forest floor is spongy, like a pillow or waterbed,” Dr. Rogers says. “It’s often very damp, too, because black spruce forests facilitate the growth of moss and lichen that retain moisture.”
However, these ground covers can also dry out quickly. Spruce have evolved alongside that moss and lichen to create a fire-prone environment. It only takes a few days or even hours of hot and dry weather for the porous mosses to lose their moisture, and the spruce are full of flammable branches and resin that fuel flames up into the tree’s crown.
Black spruce need these fires to regenerate. Their cones open up in the heat and drop seeds onto the charred organic soil, which favors black spruce seedlings over other species. The organic soil layers built up by the moss are thick enough to present a challenge for most seedlings trying to put down roots, but black spruce seeds are uniquely designed to succeed.
Dr. Jill Johnstone, Affiliate Research Scientist at the University of Alaska Fairbanks, who also contributed to the PNAS study, compares it to a lottery system that black spruce have rigged for millennia.
“After fire, anything can happen,” says Johnstone. “But one way to make sure you win the lottery is to buy a lot of tickets. Black spruce has the most tickets. It has the most number of seeds that are the right size to get roots down into mineral soil, and so it tends to regenerate after fire.”
Potential competitors like white spruce, Dr. Johnstone says, don’t disperse very far from standing trees so they only get a few lottery tickets. Deciduous species like aspen or birch have seeds that are too small to work through the thick organic layers—their tickets are faulty. So the fire lottery tends to perpetuate black spruce’s dominance in what’s known as a “stabilizing feedback loop”.
That stable loop has begun to break down, however. Black spruce just aren’t re-establishing themselves as frequently after fire. The study examined the characteristics of different sites to better understand what might be hampering regeneration success.
Sites that failed to regenerate with black spruce were typically drier than normal. They also tended to have shorter intervals between successive fires. Black spruce stands have historically experienced the kinds of intense, stand-replacing fires that burn through everything only once per century. This long interval allows the trees to build up a healthy bank of cones to release seeds the next time they burn. More frequent, returning fires short-circuit the regeneration process.
Increased burning also strips away more of that thick organic soil layer that favors black spruce, revealing mineral soils underneath that level the playing field for other tree species. The more completely combusted those organic layers are, the more likely spruce are to have competition from jack pine, aspen, or birch. Loss of black spruce resilience was more common in Western North America, which aligns with the fact that drier sites are more likely to lose their black spruce.
“Basically, the drier the system is, the more vulnerable it is to fire,” Dr. Baltzer says. “And these are the parts of the landscape that are also more likely to change in terms of forest composition, or shift to a non-forested state after fire. If climate change is pushing these systems to an ever drier state, these tipping points are more likely to be reached.”
For Dr. Rogers, it also highlights the real possibility of losing black spruce across much of boreal North America as the region warms.
“This is evidence that black spruce is losing its dominant grip on boreal North America,” Rogers says. “It’s happening now and it’s probably going to get worse.”
Landscape-wide ecological shifts from black spruce to other species will have complicated, rippling impacts on the region.
Of most concern is the impact on permafrost. In many parts of the boreal, those mossy soil layers that promote black spruce also insulate permafrost, which stores large amounts of ancient carbon. Replacing the dark, shaded understory of a black spruce forest with a more open deciduous habitat that lacks mossy insulation could accelerate thaw. Thawing permafrost and associated emissions would accelerate a warming feedback loop that could push black spruce to its tipping point.
Widespread loss of black spruce also has implications for biodiversity, particularly caribou species that overwinter in the forest and feed on lichen. Both barren-ground and boreal caribou, important cultural species for northern communities, are already in decline across the continent and would suffer more losses if the ecosystem shifts away from the black spruce-lichen forests that provide food and refuge.
Dr. Johnstone did point out some potential for black spruce to recover, even if initial regeneration post-fire is dominated by other species. Slower growing, but longer lived, conifers can often grow in the shade of pioneer deciduous species and take over when they begin to die off—but this requires longer intervals between fires for the spruce to reach maturity. There is also the possibility that more deciduous trees, which are naturally less flammable than conifers, could help plateau increasing fires on the landscape.
But both these hopes, Dr. Baltzer says, are dependent on getting warming into check, because deciduous or conifer, “if it’s hot enough, and the fuel is dry enough, it will burn.”
A new analysis from Senate Majority Leader Chuck Schumer’s (D-N.Y.) office finds that pending infrastructure and budget bills would put the U.S. on track to hit the Biden administration’s targets for greenhouse gas emissions reductions over the next decade. That’s good news. But what if we’re aiming for the wrong target?
There’s a major source of greenhouse gas emissions that could derail international efforts to limit climate change, yet most people have never heard of it. It isn’t included in most climate models, nor in the calculations of how quickly we need to curtail fossil fuel emissions. It’s called permafrost, and its carbon footprint this century could be on par with unchecked emissions by the likes of Japan, India, the U.S., or even more than all these nations. Excluding such a player from international calculations and negotiations would be unthinkable. And yet, that is precisely what we’ve been doing with permafrost emissions.
Permafrost is long-frozen soil that has stockpiled immense amounts of carbon over thousands of years. It covers an area almost twice the size of the United States and holds twice as much carbon as is currently in the atmosphere. As the Arctic warms (something it is doing at three times the rate of the rest of the globe). permafrost is thawing—sometimes abruptly and dramatically—and beginning to release carbon dioxide and methane into the atmosphere. As in other parts of the world, Arctic wildfires are increasing in size and intensity, releasing yet more greenhouse gases and thawing more permafrost. The warmer it gets, the more carbon is emitted. And because those greenhouse gases drive even more warming, it can set off a vicious cycle of self-propelled warming.
Read the full opinion piece by Dr. Sue Natali and Dr. Brendan Rogers in The Hill.
The permanence of frozen ground in the Arctic is no longer guaranteed as Earth’s temperatures continue to climb. But how much the degradation of so-called permafrost will worsen climate change is still unclear, according to the Intergovernmental Panel on Climate Change’s (IPCC’s) Sixth Assessment Report, released this week. The uncertainty leaves researchers with a frustrating hole in their climate projections.
Permafrost covers a quarter of the Northern Hemisphere’s land and stores around 1.5 trillion metric tons of organic carbon, twice as much as Earth’s atmosphere currently holds. Most of this carbon is the remains of ancient life encased in the frozen soil for up to hundreds of thousands of years.
In recent decades, permafrost has thawed because of global warming from heat trapped primarily by carbon dioxide released to the atmosphere from burning fossil fuels. Arctic warming is rising at twice the global average rate since 2000, according to the National Oceanic and Atmospheric Administration. As that increase accelerates the thaw of permafrost, the organic carbon contained within it breaks down and releases carbon dioxide, exacerbating climate change.
Read the full article on Scientific American.