Squabbling, compromise, disappointment, hope, and incremental change— these are features of any decision making process, but especially one requiring the cooperation and agreement of nearly 200 countries with varied interests, resources, and desire for change. 

At the annual Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC), member countries gather to hash out the gritty details of international agreements concerning climate change. These COPs have become the world’s most prominent stage for climate action, drawing not only heads of state and diplomats, but also scientists, activists, businesses, journalists, financial organizations, Indigenous knowledge holders, artists, and spiritual leaders, just to name a few. All are in attendance to influence the future of planet Earth. 

Here’s how climate’s biggest event of the year steers the international framework for combating climate change.

What is COP?

Formally, the COP is the decision-making platform for signatories of the UN Framework Convention on Climate Change (UNFCCC). The UNFCCC is a legally binding agreement between UN member countries, created specifically to tackle the crisis of climate change. Each year since its creation, delegations from participating countries (called Parties) have met at the COP to discuss the agreements and mechanisms by which to address climate change. 

After two weeks of negotiation, conference delegates produce text that becomes binding for UNFCCC Parties. These texts have legislated things from the commitment of industrialized nations to reduce emissions, to the direction of funding for climate action, to the upper limit of acceptable warming. 

The prominence and importance of these conference proceedings have grown with each year and each increment of warming. The conference itself has expanded to encompass climate action across multiple channels at once.

“There are actually three COPs happening in parallel,” says Woodwell Climate’s Director of International Government Relations, Dr. Matti Goldberg, who has learned the ins and outs of the conference over 15 years spent working for the UN’s Climate Change Secretariat.

The first layer is the core of the conference— the negotiations. This is the space where each participating country sends delegates to argue on their behalf. The agenda for each year’s negotiations is developed during preparatory meetings of the delegates, with planning sometimes starting two years in advance, and resulting in agendas of 50-60 interlinked issues. COPs are typically judged as successes or failures based on the strength of the resulting text from the formal negotiations. The complexity of the issues, and the negotiating tactics of different countries, tend to push final agreements well beyond the scheduled closing of the COP.  

Then there’s what Goldberg calls the “high-level COP.” This is the platform for heads of state to showcase their country’s progress on various issues. Think, speeches from the president, announcements of new coalitions, hand-shaking between ministers, or denunciations of other countries’ lack of action. Although the high-level COP can feel like superficial performance, deals between countries can help move the negotiations forward— or delay them, depending on a country’s interests.

Surrounding both the formal negotiations and closed door deals is the “third COP” — also referred to as the “Blue Zone”: a space open to scientists, NGOs, activists, and companies for hosting side events, pavilions with panel talks and presentations, forge new partnerships, hold protests, and apply pressure on negotiators. The third COP also spills out into a “Green Zone”, a space where those not badged for the official conference can organize events and contribute to the momentum of the moment.

What does an NGO do at COP?

For an organization like Woodwell Climate, the third COP is the main stage on which to contribute to the conference. 

“Our first priority is to showcase our research and its relevance to the key questions of each year’s COP,” says Goldberg.

At COP29 in Baku, Azerbaijan, Woodwell Climate will host a pavilion to showcase the organization’s work in several key areas, including climate risks and national security, accounting for growing natural emissions sources like permafrost thaw and wildfires, as well as emerging collaborations with new partner countries such as Ethiopia. The pavilion also serves as a convening place to discuss work with partners.

“The sheer scale of participation at COPs makes them critical annual opportunities to solidify existing partnerships and build new ones,” says Goldberg.

While participants of this third COP aren’t officially part of negotiations, Woodwell Climate scientists still have opportunities to participate in the more formal COP processes. Each COP hosts an “Earth Information Day” where scientists exchange data and research with country delegations to better inform decision making. At COP29, Woodwell has proposed to highlight the latest research on wildfire emissions.

Scientists also have a role to play in ensuring national emissions reductions plans are based on accurate numbers—a point that Woodwell Climate will be emphasizing both at this COP and beyond. In 2025, countries must submit their updated 5-year climate targets (called Nationally Determined Contributions or NDCs) to the UNFCCC. The adequacy of those targets depends on how much carbon can still be emitted without surpassing the agreed-upon maximum limit of warming.

“Our research on permafrost and wildfires indicates that the global carbon budget available for staying below the 1.5 degrees Celcius temperature limit might be much smaller than countries are thinking right now,” says Goldberg. “From the Woodwell perspective, it would be great to remind the international community that the numbers need to add up. We need to take into account these emissions that are not being discussed.”

Successes and failures in three decades of COP

Over his tenure with the UN Secretariat, Goldberg has witnessed both promising action and frustrating setbacks, sometimes at the same conference. 

COP15, held in Copenhagen in 2009 was one of those moments for him. Here negotiations decayed, and the weak resulting agreement failed to legally bind countries to emissions reductions.

“Turkeys don’t vote for Thanksgiving,” Goldberg jokes. “Countries will generally not agree to a regime that will force them to take on targets determined at the UN or by others.”

But Goldberg says that Copenhagen did, at least, define a new paradigm where every country would commit to doing something. Voluntarily, and perhaps not ambitiously enough, but in a year widely considered a failure, steps towards universal climate cooperation were still made.

Each successive COP built upon this new paradigm and in 2015 the conference arrived at another milestone— the Paris Agreement. This is the framework under which the world operates today, with every country creating NDCs appropriate to their size and resources, with the goal of limiting warming to 1.5 degrees C above pre-industrial levels. 

The agreement spurred more conversation around how that goal would be achieved, and in 2018 the parties adopted a rulebook for its implementation. Since then, however, Goldberg says many of the conferences have been “searching for real purpose” — some kind of action to match the ambition of the Paris Agreement. But, in Goldberg’s mind, that doesn’t necessarily indicate a failure of the process.

“You can’t have a spectacle forever,” says Goldberg. “At some point the pressure should be less on the COP itself and more on countries actually working under the Paris Agreement to get more ambitious about what they’re doing, and probably making some very painful decisions at the national level.”

Climate has the world’s attention

But of course, policy making moves slowly, both for the UN and national governments. And with each year that passes, cooperation and increased ambition becomes more urgent. In 2023, record high temperatures spurred conversations about whether the 1.5 degree limit has already been surpassed. In five years, Goldberg states, “it might be way too late even to pretend that we are under that limit.”

But Goldberg remains hopeful. Before the COPs, before 30 years of tough conversations attempting to find a way through the climate crisis, Goldberg says, the prevailing thought among political scientists was that international cooperation on this scale was a fantasy. But despite its failures, the process has persisted, inching the world towards climate action. Other international treaties have taken their lead from this process as well, hosting COPs to address issues like plastic pollution and biodiversity.

“The fact that there are so many people dedicated to solving this and to working through mutual disagreements, that people haven’t walked away, makes me hopeful,” says Goldberg. “This is possibly the hardest global policy problem there is, and it has the world’s attention. I think that’s very positive.”

They keep us cool, we cut them down

Standing forests are our best natural climate solution. So why aren’t we treating them that way?

In terms of climate mitigation, forests are like green gold—working overtime to cool the planet, while also supporting a wealth of biodiversity. But we have not been saving them as one would a precious asset. Despite pledges to end deforestation, old growth forests are being cut down at alarming rates. And planting new trees is widely prioritized and incentivized over protecting existing forests. Across the board, standing forests are vastly undervalued. This has to change if we are to stand a chance of limiting warming to internationally agreed targets.

Forests are global air conditioners

According to a recent study from scientists at Woodwell and the University of Virginia, tropical forests alone are holding back approximately 1 degree Celsius of warming. About 75% of that cooling effect is due to carbon sequestration. Forests grow, trees lock away carbon in their trunks and roots and shunt it into the soil. The other 25% comes from the innate properties of forests that work to cool vast regions of the globe.

Through photosynthesis, plants release water vapor into the air in a process called evapotranspiration. The vapor contributes to cooling near the ground, as well as cloud formation higher in the atmosphere that reduces incoming solar radiation. The shape of the tree canopy also contributes. So-called canopy “roughness” disrupts air flow above the forest. The more uneven the canopy, the more turbulent the air, which disperses heat away from the surface. In the tropics, evapotranspiration and canopy roughness are high, which means that surface temperatures remain relatively low, with the heat dispersed throughout the deep atmosphere.

Forests also naturally produce molecules called biogenic volatile organic compounds (BVOC), which can either contribute to cooling by encouraging the formation of clouds, or to warming by creating ozone and methane. In the tropics, the net effect of these chemicals is cooling.

The cumulative result of these properties is that when forests are removed, the land around them begins to heat up even faster, which can increase the frequency of extreme heat and drought events. Without forests, some regions will become a lot less resilient to sudden shocks. And the release of carbon contributes to global warming which further exacerbates hot, dry conditions.

“Forests act like air conditioners,” says Woodwell Assistant Scientist, Dr. Ludmila Rattis, who studies the impacts of deforestation on agriculture in Brazil. “Deforesting in the face of climate change is like getting rid of your air conditioners before an upcoming heatwave.”

Not all forests are created equally

Protecting forests, and maintaining the cooling services they provide, is vital to limiting warming. But, with forests covering 30% of the Earth’s land, prioritizing protection is a massive task. And when it comes to carbon storage, not all forests are equally valuable. Older, healthier forests tend to have a more secure hold on their carbon.

“Mature forests have higher biodiversity and create their own microclimate,” says Woodwell Associate Scientist, Brendan Rogers. “They’re more resistant to drought and other types of disturbance. And because of that, they tend to be more stable in the face of environmental perturbations over time.”

New research from Woodwell and Griffith University has developed a method of identifying high-value forests using satellite imagery. Estimating the metric of “forest stability” through satellite data on the light reflected by vegetation and a water stress index of the tree canopy, researchers were able to determine gradients of stability within forest patches in the Amazon and boreal forests.

Using a gradient of forest stability allows for a better prioritization of forest protection strategies based on their carbon value.

“The first priority is to protect stable forests from further human disturbance,” says paper co-author Dr. Brendan Mackey. “The second priority is to identify forest areas where restoration efforts will be most cost effective.”

Guarding the forests that guard our future

But if the state of existing forests is any indication, forest protection continues to be deprioritized. Many wildfires are left to burn unless they threaten human settlements. Governments continue to incentivize deforestation for development or agricultural expansion. Indigenous and local communities are not compensated for their work stewarding their territories and keeping forests safe. And the warmer the planet gets, the more susceptible even protected forests become to drought, fire, and disease.

Research has shown that stewarding standing primary forests, and reviving degraded ones, represents the greatest opportunity for near-term carbon storage and removal. A study of global land-based carbon storage potential found that improved management of existing forests alone could store approximately 215 billion metric tons more than they currently do.

Protecting forests is cost effective, too. For example, in the United States, investing in fire fighting in Alaska’s boreal forests would require just $13 per ton of CO2 emissions avoided. That’s easily on par with other mitigation strategies like onshore wind or solar energy generation.

Effective strategies for protecting forests already exist, they’ve just been suffering from a lack of force—and often funding—behind their implementation. For example, forest carbon markets—where landowners and forest stewards are paid to protect standing forests that are otherwise vulnerable to deforestation—have the potential to keep forests safe while offsetting emissions from other sectors. But nascent carbon markets are inefficient, with weak standards for verifying the quality of credits being sold, and lacking the transparency needed to ensure credits are actually reducing overall emissions, rather than greenwashing carbon-intensive business practices.

Credits are also priced incorrectly for their relative climate value—the market currently values reforestation credits more highly, reducing incentive for landowners to conserve standing, old-growth forests when there is a better livelihood to be made in legally deforesting land for  other uses. A truly effective carbon markets system would require large investments in science that can verify credit standards.

Forests are like our global carbon savings accounts—when we cut them down, we’re drawing out money and limiting our ability to collect interest and keep growing our funds. Successful mitigation can’t be accomplished without taking the full value of forests into account and strengthening policies to reflect that. If they aren’t, the planet will pay a far greater price for it as temperatures rise.

“We can’t afford to keep cutting forests. We need to reduce emissions now, and protecting forests is one of our best available solutions. Despite the obstacles, it’s worth the investment,” says Dr. Rogers.

What can be done about permafrost thaw?

Monitor, model, and make sure Arctic communities have the support they need

With the Arctic warming 3 to 4 times faster than the rest of the world, permafrost thaw has become a significant climate threat. Scientists estimate that permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but with recent and projected thaw, the organic matter in permafrost is breaking down and releasing carbon dioxide and methane into the atmosphere, increasing the rate of climate change.

What we’re doing

Addressing this issue requires extensive data collection on permafrost emissions, as well as equitable strategies for adaptation by Arctic communities. To tackle this issue, Woodwell has partnered with the Arctic Initiative at Harvard Kennedy School, the Alaska Institute for Justice, and the Alaska Native Science Commission to connect experts in climate science, human rights, and public policy with frontline communities and high-level decision makers. The partnership is pioneering a six-year research program called Permafrost Pathways that will develop action plans to address the compounding impacts of permafrost thaw.

With the understanding that this needs to be a sustainable process with long-term impact, Permafrost Pathways’ scientists are expanding and coordinating a pan-Arctic carbon monitoring network to improve the accuracy of permafrost thaw emissions estimates. More precise measurements will fill critical data gaps and reduce uncertainties, so that permafrost emissions can be factored into global carbon budgets, climate models, targets, and measures for mitigation and adaptation. That, combined with high-resolution satellite and aircraft-based observations and advanced computer modeling, will allow for tracking the changing landscape in near real-time and more accurately projecting future emissions.

Permafrost Pathways is also collaborating with local communities to co-create Indigenous-led adaptation strategies. For many, relocation or infrastructure upgrades are needed urgently, but there is currently no process or resources to enable communities to move forward. With Arctic residents already feeling the brunt of climate change, the involvement of frontline communities is crucial in developing successful adaptation plans and effective policies.

What’s left to be done

Despite its big strides, Permafrost Pathways is still in its infancy and there is a long road ahead when it comes to tackling the complexity of permafrost thaw. Today, at least 192 countries, plus the European Union, have signed on to the Paris Agreement’s promise of reducing emissions to keep warming below 2 degrees C. But many emissions reduction goals do not include carbon released by permafrost thaw. The international community needs to take strong action to change this or else permafrost thaw could undermine climate goals.

In the Intergovernmental Panel on Climate Change’s 2021 report, permafrost thaw was named as an issue that should be included in carbon budgets and global reduction schedules, but often isn’t because there is not enough data on its climate impact. Continued support of data gathering programs like Permafrost Pathways will provide the international community, top country-level climate negotiators, and environmental ministers the knowledge needed to fix that oversight and start filling gaps.

In Arctic communities, permafrost thaw is already causing disasters like flooding, coastal erosion, and infrastructure damage. To combat this, national and international policy makers need to act now to integrate permafrost thaw into disaster policies and community-led adaptation frameworks. This will create clear planning and response procedures for future permafrost-related issues.

What you can do

Permafrost thaw is an issue that affects everyone. Understanding the local and global implications and sharing that information within immediate social circles as well as on social media platforms can help start conversations that spur action. The public also has the power to influence the development of climate policies by pressuring elected officials to tackle this serious issue.>

 

For more information about the issues surrounding permafrost thaw, read part one and part two in our Permafrost series. To stay informed and get involved, visit the Permafrost Pathways site.

The critical missing expense in global climate budgets

A major emitter is being left out of the global climate budget, and Arctic communities are already feeling the impacts

A 2022 Intergovernmental Panel on Climate Change (IPCC) report confirms that the Earth is on track to warm 1.5 degrees celsius by 2040. Warming beyond this will cause global issues like struggling coral reefs, catastrophic storms, and extreme heat waves. The international community has developed a global carbon budget that tracks how much carbon can be added to the atmosphere by human-caused emissions before we push warming past 1.5 and even 2 degrees. It functions much like a household budget— where spending more than you earn can jeopardize your stability and comfort.

With the carbon budget, that means balancing how much carbon is released into the atmosphere with how much is being stored by natural sinks. According to the IPCC, the world needs to wean itself off of “spending” down that budget as we rapidly approach 2 degrees of warming.

Permafrost is missing from the budget

But IPCC’s budget calculations aren’t factoring in a major source of emissions—permafrost thaw. Massive amounts of carbon are stored in frozen Arctic soils known as permafrost. As permafrost thaws, that carbon is released into the atmosphere in the form of carbon dioxide and methane. Scientists estimate that emissions from permafrost thaw will range from 30 to 150 billion tons this century.

Despite being on par with top-emitting countries like India or the United States, permafrost thaw is not included in the global carbon budget. It has historically been excluded because of gaps in data that make existing estimates of emissions less precise. Dr. Max Holmes, President of Woodwell Climate Research Center, says it’s “especially alarming… that permafrost carbon is largely ignored in current climate change models.” That’s because permafrost thaw emissions could take up 25-40% of our remaining emissions budgeted to cap warming at 2°C. Imagine leaving the cost of rent out of your household budget. It doesn’t mean you don’t have to pay it, it just means you won’t be prepared when that bill arrives.

Excluding permafrost thaw also means that projections of the rate of warming will be off. The unaccounted carbon will speed up warming, reducing the amount of time we have to avoid the worst impacts of climate change.

Permafrost thaw is already negatively impacting Arctic residents, especially Indigenous communities. In 2019, a Yup’ik community  that has lived in Newtok, Alaska for hundreds of years had to begin moving to higher, volcanic ground because the thawing permafrost under their town was causing disastrous floods and sinking infrastructure. Woodwell Arctic program director and senior scientist, Dr. Sue Natali, who studies permafrost thaw in Yup’ik territory, says “it’s a place where permafrost is on the brink of thawing, and will be thawed by the end of the century, if not much sooner.”

Since permafrost spans multiple countries, it has been difficult to determine who should take responsibility for it. Consequently, there is currently little government framework for adaptation. The Yup’ik people had to reach out to a variety of government agencies and lived without plumbing for decades before the federal government finally awarded them support for relocation. The community paid a heavy price for it, though. Without proper policy in place to manage climate relocation, they had to bargain for government assistance, and in the end, turned ownership of the land they were leaving over to the U.S. government.

It took sixteen years from when Congress agreed to assist the Yup’ik community to when their promises were put into action. While scientists, like the ones spearheading Woodwell’s Permafrost Pathways program, are monitoring and modeling thaw to better prepare people for the damage it can cause, vulnerable communities do not have sixteen years to wait for assistance and relocation.

If permafrost thaw continues to be overlooked by government agencies, then it will remain difficult to prevent the Earth from warming beyond 2ºC and to support frontline communities most affected by it. Tackling permafrost thaw for both Arctic communities and the planet will require a coordinated international effort.

Looking for some background on Permafrost? Read the first piece in our permafrost series: “What is Permafrost?” To learn about what must be done to combat this issue, read part three: “What can be done about permafrost thaw?”

What is permafrost?

Centuries-old frozen soil is under threat from rapid warming

Thinking about climate change usually brings to mind dramatically melting ice caps and rising sea levels, but there’s another threat that’s caught the attention of climate scientists for its potential to be equally as disastrous—thawing permafrost.

Located anywhere between a few centimeters to 4,900ft below the Earth’s surface, permafrost is soil composed of sand, gravel, organic matter, and ice that has been frozen for at least two consecutive years. Some has been frozen for centuries or even millenia, and it’s this ancient permafrost in the Arctic that holds the greatest significance for climate change.

Arctic permafrost stretches across Alaska, Scandinavia, Russia, Iceland, and Canada, and can be found beneath the Arctic Ocean, the Arctic tundra, alpine forests, and boreal forests. It covers 15% of the land in the Northern Hemisphere and 3.6 million people live atop it. Scientists estimate that Arctic permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but when it thaws, soil microbes break down the organic matter in permafrost and release carbon dioxide and methane into the atmosphere, increasing the rate of climate change.

In many places, forests, plants, and peat act as protective insulation for Arctic permafrost. This insulation helps keep carbon-storing organic matter, like plants and animals, as well as bacteria and archaea, frozen in the permafrost. However, climate change is already causing the Arctic to warm three to four times faster than the rest of the planet.

In addition to rapid warming speeding decay, it also strips back permafrost’s protective layers with increasing fires and heavy summer rains that burn and erode away top soil layers, further accelerating thaw. In some places, permafrost thaws so abruptly that the ground can collapse. Developing infrastructure that requires deforestation and underground pipes further exposes permafrost to warming. Additionally, as sea ice melts, coastal Arctic permafrost is exposed to warmer waters. The combined result is extensive permafrost thaw across the region.

Researchers have been studying permafrost thaw to determine the size of the threat it poses. Methods such as placing soil moisture sensors in strategic locations and examining soil cores collected by drilling holes into the soil to document the different layers of permafrost help gauge the rate and extent of thaw.

In a recent TEDTalk, Dr. Sue Natali, Woodwell’s Arctic program director and senior scientist, cautioned that, “By the end of this century, greenhouse gas emissions from thawing permafrost may be on par with some of the world’s leading greenhouse-gas-emitting nations.”

There are already visible signs of vast permafrost thaw in the Arctic. Since ice is an essential part of the ground’s structural integrity, the soil becomes unstable when it thaws. This leads to dangerous situations like landslides, sinkholes, and destabilized infrastructure that threaten millions of people. Remote communities are particularly impacted, losing access to roads and sources of freshwater.

For both the carbon it threatens to release, and the destabilizing impacts it has on Arctic residents, permafrost thaw is a serious threat. One that, as the Arctic continues to warm, demands urgent attention and remediation.

Until now, that attention has been slow in coming. Read about why combatting permafrost thaw is such a complex issue in part two of our Permafrost series: “The critical missing expense in global climate budgets.”

The Amazon rainforest is one of the planet’s best natural climate solutions. Roughly 123 billion tons of carbon are estimated to be stored in the trees and soils of the Amazon and, if protected, it has the power to continue sequestering billions of tons of carbon each year.

But that irreplaceable carbon sink is under steady threat from a cycle of deforestation, fire, and drought that is both exacerbated by and contributing to climate change. Preliminary analysis from Woodwell of last year’s data has outlined that the most vulnerable regions of the Amazon are where drought and deforestation overlap.

2021 data shows deforestation drives fire in the Amazon

Unlike temperate or boreal forest ecosystems—or even neighboring biomes in Brazil— fires in the Amazon are almost entirely human caused. Fire is an intrinsic part of the deforestation process, usually set to clear the forest for use as pasture or cropland. Because of this, data on deforestation can provide a good indicator of where ignitions are likely to happen. Drought fans those flames, producing the right conditions for more intense fires that last longer and spread farther. Examining the intersection between drought and deforestation in 2021, Woodwell identified areas of the Amazon most vulnerable to burning.

Areas of deforestation combined with exceptionally dry weather to create high fire risk in northwestern Mato Grosso, eastern Acre, and Rondonia. Although drought conditions shifted across the region throughout the course of the year, deforestation caused fuel to accumulate along the boundaries of protected and agricultural land.

These areas of concentrated fuel showed the most overlap with fires in 2021, indicating that without the ignition source that deforestation provides, fires would be unable to occur, even during times of drought.

In June of 2021, we identified a dangerous and flammable combination of cut, unburned wood and high drought in the municipality of Lábrea, that put it at extreme risk of burning. Data at the end of December of 2021 confirmed this prediction. The observed fire count numbers from NASA showed that last year, Lábrea experienced its worst fire season since 2012.

Fires and climate change form a dangerous feedback loop

As a result of deforestation in 2021, at least 75 million tons of carbon were committed to being released from the Amazon. When that cut forest is also burned, most of the carbon enters the atmosphere in a matter of days or weeks, rather than the longer release that comes from decay.

This fuels warming, which feeds back into the cycle of fire by creating hotter, drier, conditions in a forest accustomed to moisture. Drought conditions weaken unburned forests, especially around the edges of deforestation, which makes them more susceptible to burning and releasing even more carbon to the atmosphere to further fuel warming.

Fire prevention strategies enacted by the current administration over the past 3 years have been insufficient to curb burning in the Amazon, because the underlying cause of deforestation remains unaddressed. Firefighting crews are not sufficiently supported to continue their work in regions like Lábrea that are actively hostile to combating deforestation and fire. If deforestation has occurred, fire will follow. To ensure the safety of both the people and the forests in these high-risk municipalities, the root causes of deforestation must be addressed with stronger and more strategic policies and enforcement.