A new study, just published in the journal Nature Communications Earth & Environment, finds that severe droughts in the Amazon basin over the last two decades have led to longer periods of low water levels and triggered profound impacts on the local population.
The severe droughts in 2005, 2010, and 2015-2016, in particular, not only drastically reduced water levels in a substantial part of the world’s largest river system, but also resulted in low water level periods exceeding 100 days, a month longer than expected.
These droughts have major impacts on rural, remote Amazonian communities who heavily rely on inland water transport to access goods and services, reach urban centers, and maintain their livelihoods. The study concludes that during severe droughts, when such water transport is not available, nearly 50% of non-Indigenous localities and 54% of Indigenous villages in the Brazilian part of the Amazon basin are prone to isolation. These droughts also expose Amazonian communities to scarcity of goods, restricted access to healthcare and education, limited access to fishing and hunting sites, and other major impacts.
“This is the new reality of the Amazon,” said Dr. Letícia Santos de Lima, researcher at the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) and lead author of the study. “Scientists have been warning for years that the Amazon basin is facing a substantial increase in the frequency and intensity of extreme events due to climate change, on top of severe changes in its hydrological system due to deforestation and forest degradation. These past droughts as well as the most recent one, 2023-2024, are showing that the impacts on the ecosystems extend severely to the Amazon population.”
“The Amazon faces increasingly severe droughts due to global warming, with very real consequences for the communities that live there,” added Dr. Marcia Macedo, Woodwell Climate Research Center scientist and study co-author. “To better prepare for these extreme climate events, we need climate solutions that prioritize water resources alongside efforts to curb carbon emissions. This will be key for sustaining resilient ecosystems and communities in the Amazon and around the world.”
The paper states that “actions to cope with recent droughts in the Amazon have been reactive rather than proactive and grounded in preparedness and adaptation principles,” and calls for Amazon countries to “develop long-term strategies for mitigation, adaptation, and disaster response.” The authors also stress that any solutions to isolation must not also worsen the problem. For example, roads would not be an effective solution as they are a well-known driver of deforestation, which leads to changes in rainfall, contributes to a higher volume of sediments in rivers, and would impair navigability even further.
Using an interdisciplinary approach, researchers combined spatial analysis, methods from hydrology, and news media content analysis to deliver the first spatiotemporal assessment of cross-sectoral impacts of droughts in the Amazon basin.
O céu se abre no momento em que nosso caminhão deixa o último trecho de estrada pavimentada. A Diretora do Programa de Água, Dra. Marcia Macedo, aperta os olhos para manter o foco no que consegue ver entre uma limpeza e outra do para-brisa. Em poucos minutos, nosso caminho se transformou de uma estrada de terra em um leito de rio de lama laranja brilhante, sulcado pela passagem de caminhões pesados que transportam soja das fazendas vizinhas.
Macedo desvia para evitar solavancos e depressões, mas logo há mais deles do que estrada plana. Nós nos preparamos para as poças, olhando pelas janelas salpicadas de spray laranja.
É uma manhã de segunda-feira, na estação chuvosa, nos arredores da Amazônia, e estamos indo para o trabalho.
A Estação de Campo de Tanguro fica a cerca de uma hora de carro de Canarana, a cidade mais próxima, localizada em uma região do Brasil às vezes chamada de arco do desmatamento. Há várias décadas, a agricultura começou a surgir na região sul da floresta amazônica, criando áreas retangulares de terras agrícolas na floresta primária. Na maior parte do trajeto, somos ladeados apenas por megacampos de soja ou pastos de gado.
Macedo, que realiza pesquisas na Tanguro desde 2007, lembra-se de uma época em que a viagem poderia ter sido marcada pela travessia do limiar das savanas florestais do Cerrado – Brasil – para a Amazônia. Agora, o desmatamento próximo à estrada obscureceu essa transição natural. Eventualmente, no entanto, tufos verdes exuberantes emergem da chuva e percebemos que estamos quase lá.
Desde a sua fundação em 2004, a Tanguro tem oferecido a pesquisadores de todo o mundo a oportunidade de investigar grandes questões sobre como as mudanças climáticas e o desmatamento estão afetando a Amazônia. Macedo e sua equipe vieram para estudar os córregos e reservatórios da Tanguro.
Paramos do lado de fora da estação de pesquisa, tirando as malas, embrulhadas em sacos plásticos de lixo, da caçamba da caminhonete. A assistente de pesquisa, Zoe Dietrich, segura vários componentes eletrônicos vitais no peito, levando-os para uma varanda coberta para protegê-los da chuva. A pós-doutoranda Dra. Aibra Atwood começa a retirar tubos de núcleo de sedimentos de uma pilha de equipamentos. As nuvens se dissipam e o dia de trabalho na Tanguro começa.
A decisão de se estabelecer na fazenda Tanguro causou polêmica na época.“Quase nos separou”, lembra o fundador da Tanguro, Dr. Daniel Nepstad. “Tivemos uma discussão que durou dois dias.”
Quatorze anos antes, Nepstad havia estabelecido o programa amazônico no Woodwell Climate (então Woods Hole Research Center) no estado do Pará, estudando a resiliência das florestas amazônicas durante as longas estações secas. Esse trabalho deu origem a um novo instituto de pesquisa com sede no Brasil – em 1995, Nepstad cofundou o Instituto de Pesquisa Ambiental da Amazônia (IPAM) em Belém para buscar ciência relevante para políticas que pudessem informar o desenvolvimento sustentável na Amazônia. A Woodwell Climate e o IPAM começaram a realizar experimentos de simulação de secas e descobriram que a floresta tropical, que há muito tempo era considerada imune ao fogo, perdia essa resistência durante secas severas. Para investigar as implicações disso, Nepstad percebeu que eles precisavam de um novo experimento em algum lugar na borda da Amazônia, onde é mais seco o ano todo.
Nepstad vinha passando cada vez mais tempo no estado do Mato Grosso, interessado pela expansão do cultivo de soja na Amazônia. Durante sua busca por um novo local de estudo, o Grupo Amaggi fez um convite extraordinário.
O Grupo Amaggi era, na época, o maior produtor de soja do mundo, e a soja estava rapidamente se tornando o inimigo ambiental número um, à medida que centenas de milhares de acres de florestas eram derrubados para expandir seu cultivo.
“Mas o Grupo Amaggi, uma empresa brasileira, queria se antecipar à questão”, diz Nepstad. A perspectiva de perder um mercado importante na Europa levantou questões sobre o melhor caminho a seguir. Em 2002, eles criaram o primeiro sistema para rastrear as práticas florestais dos agricultores que lhes vendiam soja. Em 2004, eles fizeram um convite a Nepstad para pesquisar as florestas em sua recém-adquirida propriedade Tanguro, um conjunto de fazendas de gado desmatadas que estavam em processo de conversão para campos de soja.
A esperança era que a pesquisa demonstrasse ao mundo o que realmente estava acontecendo nessas enormes fazendas de soja na Amazônia, fornecendo dados que poderiam contribuir para conversas sobre soja sustentável.
“Há vinte anos, havia muitas discussões sobre preservação ambiental e agricultura”, diz a Diretora de ESG, Comunicações e Conformidade do Grupo Amaggi, Juliana de Lavor Lopes. “Esses dois podem criar uma simbiose? Acho que sabíamos que [eles] poderiam trabalhar juntos, mas será que poderíamos provar isso?”
Para Nepstad, o convite também foi a oportunidade perfeita para realizar um experimento de fogo controlado em um local ideal. Após muitos debates, o IPAM decidiu aceitar.
“Muitas pessoas temiam que isso arruinasse nossa reputação, minasse nossa credibilidade junto às organizações de base – muitas ONGs achavam que estávamos nos vendendo”, diz Nepstad. “Algumas pessoas nos acusaram de termos sido comprados pelo Grupo Amaggi.”
Mas Nepstad foi muito claro quanto aos termos da parceria. Eles não aceitariam nenhum dinheiro da empresa além do que o Grupo Amaggi investiu nos prédios do campus da estação de pesquisa. E eles só apoiariam as atividades da fazenda na medida em que a ciência permitisse. A pesquisa relataria com precisão os impactos da agricultura sobre a floresta, sem restrições de publicação
Assim, em 2004, com poucos recursos financeiros, mas acompanhados por uma equipe dedicada de técnicos de campo e pesquisadores dos experimentos de seca no Pará, – alguns dos quais ainda trabalham na estação de campo atualmente – Woodwell e IPAM montaram um acampamento na Tanguro.
As botas sujas de lama começam a fazer fila do lado de fora da porta do refeitório às 11h50. Donna Lucia serve o almoço pontualmente ao meio-dia.
Maria Lúcia Pinheiro Nascimento administra a cozinha da Tanguro há mais de 16 anos, preparando refeições fartas para cientistas e técnicos de campo famintos três vezes ao dia. O almoço e o jantar geralmente envolvem alguma carne grelhada ou cozida lentamente, arroz, feijão e uma salada fresca ou legumes assados. Hoje tem abóbora, abobrinha e sobras de linguiça e peito do churrasco de ontem à noite. O café da manhã é mais leve – pão de queijo, ovos, pão fresco, frutas e café – preparado e devorado antes do início do trabalho às 7h.
Muitos dos técnicos que vivem e trabalham aqui cinco dias por semana dizem que a Tanguro é como uma segunda casa, e seus colegas, uma segunda família. Para Dona Lúcia, como é chamada pelos funcionários e visitantes, cozinhar para a estação de pesquisa não é como cozinhar para a família. É realmente cozinhar para a família. Seu marido, Sebastião Nascimento, o “Seu Bate”, foi um dos primeiros técnicos de campo a trabalhar no experimento de seca no Pará. Ele voou para se juntar à equipe da Tanguro um ano após a fundação da empresa e trouxe sua família um ano depois, incluindo seu filho, Ebis Pinheiro de Nascimento, que também entrou como técnico de campo. Um terceiro técnico do Pará, Raimundo Mota Quintino, conhecido como “Santarém”, juntou-se à família quando se casou com a filha de Dona Lúcia.
“Estou com minha família”, diz ela. “Isso me traz alegria.”
Com ou sem parentesco, a equipe da Tanguro trabalha em conjunto, como uma família. A cooperação e o respeito são essenciais em um lugar tão remoto e desconectado (o wifi só se estende a cerca de 18 metros do prédio da cantina) como a Tanguro.
“Brincamos que é como se fosse o ‘Big Brother’”, diz o gerente de campo Darlisson Nunes da Costa. “Mas estamos realmente unidos e nos respeitamos mutuamente. É um ambiente maravilhoso para se trabalhar”.
Também pode ser um ambiente fisicamente desafiador, com longos dias de calor e umidade, preocupações com a segurança em uma floresta cheia de cobras e onças, porcos selvagens territoriais e terrenos que podem facilmente causar uma torção no tornozelo. Ao mesmo tempo, garantindo que os cientistas obtenham os dados de que precisam.
Todo técnico de campo precisa ser adaptável e versátil, pois, além dos horários das refeições, não há rotina diária. Sua manhã pode envolver o corte de videiras para encontrar um caminho para um riacho escondido, selecionado a partir de imagens de satélite como um local de amostragem. A tarde pode ser dedicada à solução de problemas em uma das torres de monitoramento de carbono.
“Não podemos dizer que temos um trabalho monótono”, diz Seu Bate. “Fazemos de tudo um pouco.”
Mesmo assim, cada um dos técnicos desenvolveu suas especialidades ao longo das décadas. Santarém ainda usa as habilidades de aquaviário de seu trabalho anterior como guia de pesca na cidade portuária do Pará que lhe deu o apelido. Ele leva a canoa para os reservatórios com frequência, ajudando os pesquisadores a extraírem núcleos de sedimentos. Seu Bate pode construir o que você precisar – seja a base de alumínio para uma câmara flutuante de monitoramento de metano ou um colar personalizado para segurar tubos de núcleo de solo pesados enquanto você coleta amostras, basta dar a ele 20 minutos e algumas ferramentas elétricas. Nunes da Costa mantém as atividades de campo da equipe organizadas a cada semana e consegue, sem esforço, abrir um caminho claro na floresta. O Ebis gosta de coletar dados, especialmente quando isso envolve a coleta de amostras de água ou de peixes nos cursos d’água de Tanguro. Para o coordenador de projetos científicos da estação, Dr. Leonardo Maracahipes-Santos, escalar a torre de carbono de 35 metros é como caminhar.
As pessoas que visitam a Tanguro variam. Às vezes, as semanas passam com apenas os técnicos de campo na residência e, às vezes, as pequenas casas em estilo de cabine e a alegre cantina da estação estão repletas de hóspedes.
Esta primavera já foi bastante movimentada. Maracahipes-Santos cuida das atividades diárias e organiza a equipe rotativa de visitantes. Em poucas semanas, ele passou de acompanhar
uma equipe de jornalistas brasileiros pelos locais de estudo, a trabalhar com colaboradores do Instituto Max Planck na manutenção de rotina das torres de carbono e a coordenar conversas entre pesquisadores visitantes e representantes do Grupo Amaggi sobre a remoção de várias barragens na propriedade.
E mesmo durante as semanas mais calmas, ainda há muita ciência a ser feita – coleta de amostras para estudos em andamento, execução de análises de dados, verificação de equipamentos. É difícil conseguir um dia de folga na Tanguro, mas pelo menos nunca é entediante.
“É muito interessante, porque fazemos parte de um projeto grandioso, que é montar experimentos em campo junto com os cientistas”, diz Nunes da Costa. “Nós nos sentimos um pouco como cientistas porque todo esse negócio começa no chão. Podemos começar com um pedaço de madeira colocado no chão e chegar até um artigo científico. Tenho muito orgulho. Não apenas de mim, mas de toda a equipe.”
Por sua vez, Dona Lucia se orgulha de alimentar a ciência na Tanguro.
“Tenho muito orgulho de estar em uma empresa como esta, hoje”, diz Dona Lúcia. “Hoje em dia, para trabalhar em uma empresa como essa, é preciso ter um diploma, e eu não tenho. Não tenho diploma de gastronomia. Não tenho nenhum diploma. Mas aprendo todos os dias”.
O trabalho de campo termina às 16h, deixando Macedo, Atwood, Nunez da Costa e eu suados e exaustos após passar uma tarde vagando por áreas úmidas acidentadas em busca de leitos de riachos. A Atwood estava colocando medidores de temperatura a cada 500 metros acima e abaixo dos reservatórios. Ela está interessada nos impactos que esses pequenos corpos d’água têm sobre a bacia hidrográfica e até onde esses impactos se estendem. No entanto, os riachos amazônicos muitas vezes passam por segmentos intransponíveis de pântano, de modo que encontrar os locais de amostragem exige uma caminhada vigorosa e um bom facão.
Após a caminhada, encontramos o grupo de jornalistas visitantes no reservatório de Darro. Um dos maiores reservatórios de Tanguro, o Darro fornece água para a estação de pesquisa para chuveiros e limpeza. Em dias especialmente quentes, também é um ótimo local para nadar.
A água é quente – mais quente do que os riachos próximos, os dados de temperatura de Atwood confirmaram – mas ainda assim mais fria do que o ar abafado. Também é transparente. Nossos pés podem ser vistos pisando na faixa de água mais fria lá embaixo. Reflexos brancos e ondulantes se formam na superfície, um espelho perfeito das nuvens acima.
Na Amazônia, a água é tudo. É isso que torna possível a existência de florestas exuberantes. É o que liga uma fazenda de soja no Mato Grosso a estuários na foz do rio Amazonas. E é isso que conecta essa região ao clima global. As nuvens que se aglomeram acima de Darro ficam mais pesadas e mais escuras com a chuva enquanto nadamos. Embora parte dessa chuva caia de volta à Terra aqui, outra parte é empurrada para fora dos trópicos para cair em outros lugares.
“A água faz duas coisas”, diz o diretor do programa Woodwell Tropics, Dr. Mike Coe. “Primeiro: a chuva está caindo em outro lugar. Segundo: água é energia. É preciso uma enorme quantidade de energia para evaporar a água e essa energia é liberada em outro lugar quando chove. Assim, a energia do sol que cai aqui é transportada para todo o mundo. Isso é muito importante. Isso define o clima”.
Isso significa que, por meio da água, as mudanças aqui têm o potencial de causar grandes mudanças em todo o mundo. A localização da Tanguro em uma região da Amazônia que sofreu intenso desmatamento para a agricultura há apenas algumas décadas torna-a um local ideal para estudar essa causa e efeito.
“Quando você remove as florestas da paisagem, você muda algumas coisas fundamentalmente que não podem ser desfeitas”, diz Macedo. “Você altera a quantidade de água nos córregos, altera a profundidade de enraizamento das plantas na paisagem, altera todo o ciclo hidrológico.”
A Tanguro é bastante representativa das mudanças ocorridas em toda a região. É um mosaico de florestas naturais, campos de soja e algodão e alguns bosques de eucaliptos plantados. Algumas de suas bacias hidrográficas estão completamente dentro dos limites da floresta, outras passam completamente por terras agrícolas. Alguns riachos têm florestas bem preservadas ao longo de suas margens, enquanto outros estão em processo de restauração. As espécies amazônicas se misturam com as da savana brasileira. Está se tornando mais quente e mais seco à medida que o clima muda. Para os cientistas climáticos e ecologistas da Woodwell e do IPAM, esse é o laboratório natural perfeito.
Como o primeiro projeto de pesquisa lançado naquele laboratório, o experimento com fogo ganhou muita atenção.
“O Grupo Amaggi mobilizou a sociedade, havia jornalistas, repórteres de jornais e bombeiros. Pessoas da empresa e pessoas das cidades locais”, lembra Nepstad. Era um território novo, queimando intencionalmente a floresta para saber como isso mudava a paisagem. “Foi muito emocionante.”
A cada novo ano de queima, as percepções se revelavam. Em um ano particularmente quente e seco, a floresta queimou ainda mais do que o previsto. Nepstad se lembra de ter visto as chamas, na altura das canelas, ainda queimando às 2h da manhã seguinte. A mortalidade das árvores depois disso saltou de 6% para 50%.
“Isso foi trágico para aquele trecho de floresta”, diz Macedo. “Mas produziu percepções realmente importantes. Quase presciente. Basta olhar para 2023: foi um ano incrivelmente seco na Amazônia e, de repente, vimos florestas no meio da floresta tropical – áreas que costumavam ser muito úmidas para queimar agora podem queimar durante uma grande seca.”
Com o experimento de fogo em andamento, ainda havia quase 200.000 acres de terra disponíveis para estudo, então Nepstad convidou pesquisadores como Macedo, Coe e o Dr. Paulo Brando, que trabalhou com Nepstad no Pará, para explorar que outras histórias a Tanguro poderia contar sobre a Amazônia. Em seus 20 anos de história, mais de 180 artigos foram publicados a partir de pesquisas na estação, variando em tópicos desde mudanças hidrológicas até os limites climáticos da agricultura produtiva, a degradação do carbono florestal e o valor dos excrementos de anta para restauração. Brando atribui os resultados prolíficos da estação ao conhecimento de sua equipe.
“Parte da magia da Tanguro é aprender com as pessoas que trabalham há 20 anos na floresta. Eles têm um senso intuitivo do que está acontecendo com a saúde dessas florestas”, diz Brando.
Outro aspecto exclusivo da localização da Tanguro é sua posição em relação ao ecossistema maior. As centenas de pequenos riachos que cruzam a Tanguro formam as cabeceiras do rio Xingu, um importante afluente do tronco principal do Amazonas. Tanguro fica a apenas 60 quilômetros da Terra Indígena Xingu, por onde corre o rio de mesmo nome. Quaisquer distúrbios a montante de nutrientes, sedimentos ou fluxo de saída do córrego têm o potencial de se propagar até a reserva, afetando os meios de subsistência das comunidades indígenas.
“Os cursos d’água que estamos explorando na Tanguro fluem para a Reserva do Xingu. Portanto, é importante entender essas questões científicas de como a qualidade da água está sendo afetada pela agricultura como uma questão transfronteiriça”, diz Macedo. “A água conecta tudo.”
Quando a Coordenadora Geral da Tanguro, Dra. Ludmila Rattis, iniciou sua pesquisa de pós-doutorado na estação de campo, Canarana era uma cidade diferente – pequena e dominada por homens o suficiente para que uma cientista ambiental não tivesse esperança de permanecer anônima. Rattis via seu nome escrito na comnda do bar como “menina do IPAM”. Ao andar na rua, sentia os olhares e às vezes era abordada por pessoas perguntando se ela trabalhava com os indígenas.
Era um lugar difícil de se estar, lembra ela. “Eu me sentia observada o tempo todo. Eu não podia fazer nada sem trazer comigo o nome de uma instituição. E a conexão com a Internet era de menos de um megabyte, não dava para assistir filmes em streaming”, diz Rattis. “Abrir um e-mail era um desafio.”
Trabalhar para uma organização ambiental sem fins lucrativos em uma cidade agrícola que deve sua própria existência ao desmatamento é, às vezes, difícil de navegar. Mas a agricultura está entrelaçada no DNA da Estação de Campo de Tanguro. Os cientistas do clima podem se arrepiar ao ver escavadeiras pressionando a vegetação rasteira, mas em última análise, a proximidade com a agricultura aqui levou a algumas das percepções mais valiosas da estação.
“Por estarmos neste lugar há muito tempo, podemos observar as mudanças à medida que elas ocorrem e dizer algo com muito mais confiança sobre os impactos mais amplos na Amazônia”, diz Macedo.
A parceria com o Grupo Amaggi também ajudou a conectar a ciência a grandes decisões no setor de soja. Em 2012, quando os debates sobre o futuro do Código Florestal brasileiro estavam em pleno andamento, Nepstad foi convidado a participar de uma viagem de campo a Tanguro com os principais legisladores que estavam elaborando o novo código, incluindo o senador Blairo Maggi, proprietário do Grupo Amaggi. Ver em primeira mão os experimentos de restauração florestal na estação ajudou a demonstrar a viabilidade da implementação das novas proteções. O Código Florestal foi revisado e a maioria de suas restrições ao desmatamento ainda está em vigor.
“Foi realmente a ciência que abriu essas portas”, diz Nepstad.
A pesquisa de Rattis, em particular, contribuiu para fortalecer as parcerias com fazendas da região. Ela passou o ano em Canarana conversando com os agricultores sobre a experiência deles com as mudanças climáticas – estações chuvosas que começam mais tarde, queda na produtividade das colheitas – e perguntando quais informações os modelos climáticos poderiam ser úteis. Aos poucos, à medida que Rattis apresentava a eles seus resultados, mostrando-lhes as previsões de chuva e temperatura e mantendo um diálogo aberto, ela construiu um relacionamento que não só fortaleceu sua relação com a comunidade, mas ajudou a orientar pesquisas futuras.
“Os fazendeiros lhe dirão se algo parece certo ou não, e 90% das vezes eles dirão ‘uau, você pode me enviar esse gráfico? Quero mostrar aos meus vizinhos’”, diz Rattis. Um novo estudo começou depois que conversas com um gerente de fazenda sugeriram uma conexão entre as florestas e a produção agrícola. “Eu disse que estávamos nos perguntando se as plantações produziriam mais perto da floresta, e ele disse: ‘isso faz sentido porque as plantas de algodão são maiores perto da borda da mata’.”
Os pesquisadores da Tanguro também estabeleceram conexões com os moradores da reserva indígena do Xingu, nas proximidades, formando parcerias com as aldeias para estudar os impactos a jusante dos incêndios recorrentes. Um professor da Universidade Federal da Amazônia (UFRA), Dr. Divino Silvério, que realizou sua pesquisa de doutorado no Tanguro, liderou grande parte desse trabalho.
“A ideia principal era integrar o conhecimento científico que tínhamos na Tanguro com o conhecimento tradicional dos povos indígenas, para quantificar melhor os impactos do fogo sobre as espécies que são usadas por eles para alimentação, construção e medicina”, diz Silvério.
Durante o estudo, Silvério e sua equipe de pesquisa visitaram a reserva do Xingu para discutir a pesquisa e compartilhar percepções. Eles também forneceram bolsas de estudo a vários estudantes indígenas para ajudar na coleta de dados e visitar a Tanguro para uma troca de conhecimentos.
“Os povos indígenas vêm manejando bem as florestas há séculos”, diz Silvério. “Mas agora temos a mudança climática. Está se tornando realmente urgente ter esse tipo de conversa no sentido de encontrar algumas soluções para mitigar os impactos das mudanças climáticas sobre os meios de subsistência dessas pessoas.”
Rattis também acredita que a Tanguro tem um papel a desempenhar como um centro educacional. No último ano, ela tem trabalhado para criar um prêmio de redação para estudantes locais, homenageando um funcionário do IPAM que defendeu a educação ambiental nos anos 2000.
“A Tanguro que temos hoje é o legado de muitas pessoas que trabalharam lá”, diz Rattis.
Maracahipes-Santos já escalou essa torre milhares de vezes. Hoje ele sobe mais uma vez para prender uma corda sobressalente em um de seus suportes superiores. Se um de nós desmaiar
no meio da escalada, pelo menos eles poderão nos descer com cuidado. Se tudo der certo, escalaremos os 35 metros para cima e para trás com nossa própria força, ancorados no centro da torre com um mecanismo que trava como um cinto de segurança sob força repentina para baixo.
A torre em si é essencialmente uma escada coberta de vegetação, com vários medidores de gás e de temperatura presos a postes finos no topo. Três deles estão localizados ao redor da Tanguro para monitorar o movimento de dióxido de carbono, vapor de água e outros gases que entram e saem da paisagem. Essa torre em particular fica a 15 minutos de caminhada em uma seção de floresta intacta que foi usada como local de controle durante o experimento de incêndio.
Depois de verificar e verificar novamente minhas cordas, um grito de Maracahipes-Santos, que já estava no topo, sinalizou que era hora de começar a escalada.
Uma mão sobe um degrau, depois a outra. Os pés acompanham. Passo, passo, respire. Você deve se inclinar para trás, deixar que o arnês o segure e empurrar seu peso para cima com as pernas, mas um instinto inabalável me faz puxar com força a escada, de modo que, quando chego ao topo, meus antebraços estão tremendo. Suada, ofegante, corada, mas finalmente sobre o galpão. Maracahipes-Santos sorri e prende meu gancho de segurança em um dos suportes. Aqui em cima, somos mais altos do que as árvores.
Do alto da torre, você pode ler a história e o futuro desse lugar apenas virando a cabeça. A floresta se estende até o horizonte em uma direção, um mosaico ininterrupto de verde profundo. Em outro, é possível ver retângulos enormes de terra vermelha e tapetes uniformes de soja verde-clara cortados na paisagem. Em algum lugar escondido atrás de um bosque de eucaliptos plantados estão os telhados de metal corrugado da estação de pesquisa. A chuva está caindo no horizonte.
Há poucas décadas, tudo isso era floresta. Apenas outro aglomerado impossivelmente espesso de organismos vivos que respiram, morrem e crescem novamente em um dos ecossistemas de maior biodiversidade do planeta. Agora, os instrumentos de sensoriamento remoto documentam seu declínio.
A pesquisa na Tanguro é orientada por uma grande questão: “Qual é o futuro da Amazônia?” Mas a resposta a essa pergunta dependerá: dos cientistas que continuarem a vir a Tanguro para entender como esse ecossistema está mudando; dos técnicos de campo que tornarem possível conduzir a ciência na floresta com segurança; dos fazendeiros que se orgulharem de cuidar das florestas que estão em suas terras; dos funcionários do governo que criarem políticas que reflitam a ciência; e das decisões de pessoas a milhares de quilômetros de distância para reverter a mudança climática.
“Quando se faz uma pesquisa sobre essa floresta, percebe-se que é um sistema incrivelmente resistente, que agora está enfrentando estresses e distúrbios cada vez mais fortes. Portanto, ele precisa de ajuda e precisa ter uma chance, mas continuará”, diz Nepstad. “E acho que a Tanguro tem um papel importante nisso.”
Os últimos 20 anos na Tanguro contribuíram para direcionar a Amazônia para um futuro mais promissor. O que os próximos 20 anos nos trarão?
“Minha esperança”, diz Rattis, “é que em 20 anos não estaremos mais lidando com o desmatamento. ‘Lembra-se daquela vez em que tivemos que convencer as pessoas a não derrubar a floresta? Estou muito feliz por termos superado isso’”.
The sky opens up just as our truck leaves the last stretch of paved road. Water Program Director Dr. Marcia Macedo squints to stay focused on what she can see between wipes of the windshield. Within minutes, our path is transformed from a dirt road into a riverbed of bright orange mud, rutted from the passing of heavy trucks carrying soy off surrounding farms. Macedo swerves to dodge bumps and dips, but pretty soon there are more of them than there is flat road. We brace for the puddles, peering out windows spattered with orange spray.
It’s a Monday morning in the rainy season at the edge of the Amazon, and we’re commuting to work.
Tanguro Field Station lies about an hour’s drive from Canarana, the nearest town, located in a region of Brazil sometimes referred to as the arc of deforestation. Several decades ago, agriculture began surging into the southern reaches of the Amazon rainforest here, carving out rectangular patches of farmland from primary forest. For most of our drive, we are flanked only by mega-fields of soybean or scrubby cattle pastures.
Macedo, who has been conducting research at Tanguro since 2007, remembers a time when the drive could be marked by crossing a threshold from the Cerrado—Brazil’s woody savanna biome—into the Amazon. Now, clearing near the road has obscured that natural transition. Eventually clumps of lush green loom closer out of the rain and we know we’re nearly there.
Since its founding in 2004, Tanguro has offered researchers from around the world the opportunity to investigate big questions about how climate change and deforestation are affecting the Amazon. Macedo and her team have come to study Tanguro’s streams and reservoirs.
We pull to a stop outside the research station, hauling suitcases wrapped in plastic trash bags out of the truck bed. Research assistant Zoë Dietrich, clutches several vital electronic components to her chest, ferrying them to a screened-in porch to keep them out of the rain. Postdoctoral researcher Dr. Abra Atwood starts digging out sediment core tubes from a pile of equipment. The clouds drift off and the work day at Tanguro begins.
It was a controversial decision at the time. “The decision to set up on the Tanguro ranch almost drove a wedge through us,” recalls Tanguro founder, Dr. Daniel Nepstad. “We had a discussion that lasted two days.”
Fourteen years prior, Nepstad had established the Amazon program at Woodwell Climate (then the Woods Hole Research Center) in the state of Pará, studying the resilience of Amazon forests during long dry seasons. This work gave rise to a new research institute based in Brazil. In 1995, Nepstad co-founded the Amazon Environmental Research Institute (IPAM) in Belém to pursue policy-relevant science that could inform sustainable development in the Amazon. Woodwell Climate and IPAM began conducting simulated drought experiments and found that the rainforest, long thought to be immune to fire, lost that resistance during severe droughts. To investigate the implications of this, Nepstad realized, they needed a new experiment somewhere at the edge of the Amazon, where it’s drier year-round.
Nepstad had been spending more and more time in the state of Mato Grosso, fascinated by the expansion of soybean cultivation into the Amazon there. During his search for a new study site, Grupo Amaggi reached out with a remarkable invitation.
Grupo Amaggi was, at the time, the largest soy producer in the world, and soy was rapidly becoming environmental enemy number one, as hundreds of thousands of acres of forests fell to expand its cultivation.
“But Grupo Amaggi, a Brazilian company, wanted to get out in front of the issue,” says Nepstad. The prospect of losing a major market in Europe raised questions about the best way forward. In 2002 they set up the first system for tracing the forest practices of the farmers who sold them soy. And in 2004 they extended an invitation to Nepstad to study the forests on their newly acquired Tanguro property— an amalgamation of previously-cleared cattle ranches they were in the process of converting to soy fields.
The hope was that the research would demonstrate to the world what was really happening in these massive soy farms in the Amazon, providing data that could contribute to conversations around sustainable soy.
“Twenty years ago there were lots of discussions about environmental preservation and agriculture,” says Grupo Amaggi’s ESG, Communications and Compliance Director, Juliana de Lavor Lopes. “Could those two create a symbiosis? I think we knew [they] could work together, but could we prove that?”
For Nepstad, the invitation was also the perfect opportunity to run a controlled fire experiment in an ideal location. After much debate, IPAM decided to accept.
“There were a lot of folks worried that this would ruin our reputation, undermine our credibility with grassroots organizations— a lot of NGOs felt like we were selling out,” says Nepstad. “Some people accused us of being bought off by Grupo Amaggi.”
But Nepstad was very clear on the terms of the partnership. They would accept no money from the company other than what Grupo Amaggi invested in the buildings on the research station campus. And they would only support the farm’s activities as far as the science allowed. The research would accurately report the impacts of agriculture on the forest, with no restrictions on publication.
So in 2004, barely funded, but accompanied by a dedicated team of field technicians and researchers from the drought experiments in Pará— some of whom are still employed at the field station today— Woodwell and IPAM set up camp at Tanguro.
Muddy boots start lining up outside the door to the cafeteria at 11:50am. Dona Lúcia sets lunch out promptly at noon.
Maria Lúcia Pinheiro Nascimento has run the kitchen at Tanguro for over 16 years, cooking filling meals for hungry scientists and field technicians three times a day. Lunch and dinner usually involve some slow-cooked or grilled meat, rice, beans, and a fresh salad or roasted vegetables. Today there’s abóbora, a green-skinned pumpkin, and leftover sausage and brisket from last night’s churrasco. Breakfast is a lighter affair— pão de queijo, eggs, fresh bread, fruit, and coffee— set out and scarfed down before work starts at 7 am.
Many of the technicians who live and work here five days a week say Tanguro is like a second home, their peers a second family. For Dona Lúcia, as she’s called by staff and visitors alike, cooking for the research station isn’t just like cooking for family. It is cooking for family. Her husband, Sebastião Nascimento, “Seu Bate”, was one of the original field technicians working on the drought experiment in Pará. He flew down to join the crew at Tanguro a year after it was founded and brought his family down a year later, including his son, Ebis Pinheiro de Nascimento, who also joined as a field technician. A third technician from Pará, Raimundo Mota Quintino, known as “Santarém”, joined the family when he married Dona Lúcia’s daughter.
“I’m with my family,” she says. “It gives me joy.”
Related or not, the team at Tanguro works together like a family. Cooperation and respect are essential in a place as remote and disconnected (wifi only extends 60ft from the cafeteria building) as Tanguro.
“We joke that it’s like “Big Brother”,” says Field Manager, Darlisson Nunes da Costa. “But we are really united and we respect each other. That’s a wonderful environment to work in.”
It can also be a physically challenging environment, with long days in the heat and humidity, navigating safety concerns in a forest full of snakes and jaguars, territorial wild pigs and terrain that could easily twist an ankle. All the while ensuring the scientists get the data they need.
Every field technician has to be adaptable and multi-talented, because aside from meal times there is no day-to-day routine. Your morning might involve slashing vines to find a path to a hidden stream, selected from satellite imagery as a sampling location. The afternoon could be spent troubleshooting errors at one of the carbon-monitoring towers.
“We can’t say we have a fixed job,” says Seu Bate. “We do a bit of everything.”
All the same, the technicians have each developed their specialties over the decades. Santarém still uses waterman skills from his previous job as a fishing guide in the port city in Pará that gave him his nickname. He takes the canoe out on the reservoirs often, helping researchers pull sediment cores. Seu Bate can build whatever you need— whether it’s the aluminum base for a floating methane-monitoring chamber, or a custom collar to hold unwieldy soil core tubes while you sample them, just give him 20 minutes and some power tools. Nunes da Costa keeps the team’s field activities organized each week and can effortlessly cut a clear path through the forest. Ebis enjoys data collection, especially when it involves sampling the water or fishes in Tanguro’s waterways. For the station’s Scientific Projects Coordinator, Dr. Leonardo Maracahipes-Santos, climbing the 118 ft carbon tower is just like walking.
Outsider visits to Tanguro fluctuate. Sometimes weeks pass with only the field techs in residence, and sometimes the station’s small cabin-style houses and cheerful cafeteria are crawling with guests.
This spring has already been a busy one. Maracahipes-Santos handles day-to-day operations and organizes the rotating cast of visitors. In a few short weeks, he went from touring a crew of Brazilian journalists around the study sites, to working with collaborators from the Max Planck institute on routine maintenance to the carbon towers, to coordinating conversations between visiting researchers and Grupo Amaggi representatives about removing several dams on the property.
And even during slow weeks, there is plenty of science left to do—collecting samples for ongoing studies, running data analyses, checking on equipment. A day off is hard to come by at Tanguro, but at least it’s never boring.
“It’s very interesting, because we are part of a grand thing, which is to set up experiments in the field together with scientists,” says Nunes da Costa. “And we feel a little bit like scientists, because this whole business all starts on the ground. We can start from a piece of wood placed on the ground, and get all the way up to a scientific article. I feel very proud. Not only of me, but of the whole team.”
For her part, Dona Lúcia takes great pride in feeding the science at Tanguro.
“I’m very proud to be in a company like this, today,” says Dona Lúcia. “Nowadays, to work in a company like this, you need a degree, and I don’t have one. I don’t have a culinary degree. I don’t have any degree. But I learn every day.”
Field work wraps up at 4pm, leaving Macedo, Atwood, Nunes da Costa, and me sweaty and exhausted from an afternoon spent trudging through uneven wetlands to find stream channels. Atwood was dropping temperature loggers every 500 meters above and below reservoirs. She’s interested in the impacts these small water bodies have on the watershed, and how far downstream those impacts extend. But Amazonian streams often twist through impassable segments of marsh, so finding the sample sites requires vigorous hiking and a good machete.
After our hike, we rendezvous with the group of visiting journalists at the Darro Reservoir. One of the largest reservoirs at Tanguro, the Darro provides water to the research station for showers and cleaning. On especially hot days, it also makes a great swimming hole.
The water is warm—warmer than nearby streams, Atwood’s temperature data has confirmed—but still cooler than the muggy air. It’s also glassy clear. Our feet are visible treading the band of colder water down below. Billowing white reflections form on the surface, a perfect mirror of the clouds above.
Water is everything in the Amazon. It’s what makes the lush forests possible. It’s what connects a soy farm in Mato Grosso to estuaries at the yawing mouth of the Amazon River. And it’s what connects this region to the global climate. The clouds clustering above Darro grow heavier and darker with rain while we swim. Although much of that rain will fall back to Earth here, a large portion of it gets pushed out from the tropics to fall in other places.
“Water does two things,” says Woodwell Tropics Program Director, Dr. Mike Coe. “One: it’s rainfall somewhere else. Two: water is energy. It takes a huge amount of energy to evaporate water and that energy gets released somewhere else when it rains. So the energy from the sun that falls here gets transported around the world. That’s huge. That drives climate.”
Which means that, through water, changes here have the potential to cause major changes across the globe. Tanguro’s location in a region of the Amazon that underwent intense deforestation for agriculture just a few decades ago makes it an ideal place to study that cause and effect.
“Once you remove forests from the landscape, you change some things fundamentally that you can’t really undo,” says Macedo. “You change the amount of water in streams, you change the rooting depth of the plants on the landscape, you change the entire hydrological cycle.”
Tanguro is pretty representative of the changes experienced across the region. It’s a patchwork of natural forest, soy and cotton fields, and some planted eucalyptus groves. Some of its watersheds lie completely within the bounds of the forest, others run completely through agricultural land. Some streams have well preserved forests along their banks, while others are in the process of restoration. Amazonian species mix with those from the Brazilian savanna. It’s becoming hotter and drier as the climate changes. For the climate scientists and ecologists at Woodwell and IPAM, it’s the perfect natural laboratory.
As the first research project launched in that laboratory, the fire experiment garnered much fanfare.
“Grupo Amaggi had mobilized society, there were journalists and newspaper reporters and firefighters. People from the company and people from the local towns,” recalls Nepstad. It was new territory, intentionally burning the forest to learn how it changed the landscape. “It was really exciting.”
With each new year of burning, insights revealed themselves. One particularly hot, dry year, the forest burned even more than predicted. Nepstad recalled seeing flames, shin-high, still burning at 2 am the next morning. Tree mortality afterward jumped from its usual 6% up to 50%.
“That was tragic for that patch of forest,” says Macedo. “But it has yielded really important insights. Almost prescient. Just look at 2023: it was an incredibly dry year in the Amazon, and all of a sudden we saw fires in the very middle of the rainforest—areas that used to be much too wet to burn can now burn during a big drought.”
With the fire experiment underway, there was still nearly 200,000 acres of land available to study, so Nepstad invited researchers like Macedo, Coe, and Dr. Paulo Brando, who worked with Nepstad in Pará, to explore what other stories Tanguro might be able to tell about the Amazon. In its 20 year history, over 180 papers have been published from research at the station, ranging in topic from hydrologic changes, to the climatic limits on productive agriculture, to the degradation of forest carbon, to the value of tapir poop for restoration. Brando attributes the station’s prolific results to the knowledge of its staff.
“Part of Tanguro’s magic is to learn from the people who have been working for 20 years in the forest. They have an intuitive sense of what is happening with these forests’ health,” says Brando.
Another unique aspect of Tanguro’s location is where it sits in relation to the larger ecosystem. The hundreds of small streams that criss-cross Tanguro form the headwaters of the Xingu River—a major tributary to the main stem of the Amazon. Tanguro is just 60 kilometers from the Xingu Indigenous Territory, through which the river of the same name runs. Any upstream disturbances to nutrients, sediments, or stream outflow have the potential to ripple down to the reserve, impacting the livelihoods of Indigenous communities within.
“The headwater streams that we’re studying here at Tanguro drain into the Xingu reserve. So, these scientific questions of how water quality is being impacted by agriculture are important to understand as a cross-boundary issue,” says Macedo. “Water connects everything.”
When Tanguro General Coordinator, Dr. Ludmila Rattis, started her postdoctoral research at the field station, Canarana was a different town—small and male-dominated enough that a female environmental scientist had no hope of staying anonymous. Rattis would see her name written on bar tabs as “IPAM’s girl.” She went for runs and felt the stares.
It was a hard place to be, she recalls. “I felt watched all the time. I couldn’t do anything without bringing with me the name of an institution. And the internet connection was less than one megabyte, so Netflix was a challenge,” Rattis says. “Opening an email was a challenge.”
Working for an environmental non-profit in a farm town that owes its very existence to deforestation is sometimes tricky to navigate. But agriculture is woven into the DNA of Tanguro Field Station. Climate scientists may flinch to see bulldozers pressing into the undergrowth, but ultimately the proximity to agriculture here is what has yielded some of the station’s most valuable insights.
“By being here in this place for a long time, we’re able to observe changes as they happen, and say something much more confidently about what the broader impacts are on the Amazon,” says Macedo.
The partnership with Grupo Amaggi has also helped connect science to big decisions in the soy sector. In 2012, when debates over the future of Brazil’s forest code were roaring away, Nepstad was invited to join a field trip to Tanguro with the main lawmakers shaping the new code—including Senator Blairo Maggi, an owner of Grupo Amaggi. Seeing firsthand the experiments with forest restoration at the station helped demonstrate the feasibility of implementing the new protections. The forest code was revised and most of its restrictions on forest clearing are still in place today.
“It was really the science that opened these doors,” says Nepstad.
Rattis’s research, in particular, has gone a long way toward strengthening partnerships with farms around the region. She spent her year in Canarana talking with farmers about their experience of climate change—rainy seasons starting later, crop yields dropping—and asking what information they might find useful from climate models. Slowly, as she came back to them with her results, showing them rainfall and temperature predictions and keeping a dialogue open, she built a rapport that not only strengthened her relationship with the community, but helped guide future research.
“The farmers will tell you whether something looks right or not, and 90% of the time they’d say ‘wow, can you please send me that graphic? I want to show my neighbors,’” says Rattis. One new study even began after conversations with a farm manager hinted at a connection between forests and crop production. “I said we were wondering if the crops would produce more closer to the forest, and he said, ‘that makes sense because the cotton plants are bigger closer to the forest edge.’”
Researchers at Tanguro have also built connections with residents of the nearby Xingu Indigenous reserve, partnering with villages to study the downstream impacts of recurring fires. A professor with the Federal University of the Amazon (UFRA), Dr. Divino Silvério, who conducted his doctoral research at Tanguro, has led much of this work.
“The main idea was to integrate the scientific knowledge we had at Tanguro, with the traditional knowledge of the Indigenous people, to better quantify the impacts of fire on species that are used by them for food, construction, and medicine,” says Silvério.
During the study, Silvério and his research team visited the Xingu reserve to discuss the research and share insights. They also provided scholarships to several Indigenous students to help in the data collection and visit Tanguro for a knowledge exchange.
“Indigenous people have been managing the forests well for centuries,” says Silvério. “But now we have climate change. It’s becoming really urgent to have these kinds of conversations, to come up with some solutions to mitigate the impacts of climate change on the livelihoods of these people.”
Rattis also believes Tanguro has a role to play as an education hub. Over the last year she has been working to create an essay prize for local students, honoring an IPAM employee who championed environmental education in the 2000s.
“The Tanguro we have today is the legacy of the many people that have worked there,” says Rattis.
Maracahipes-Santos has climbed this tower a thousand times. Today he’s climbing it once more, to anchor a back-up belay line to one of its top struts. If one of us passes out mid-climb, at least they’ll be able to lower us down gently. If all goes well, we will be climbing the 118 feet up and back under our own power, anchored to the center of the tower with a mechanism that locks like a seatbelt under sudden downward force.
The tower itself is essentially an overgrown ladder, with various gas and weather analyzers strapped to spindly poles at the top. There are three of them stationed around Tanguro to monitor the movement of carbon dioxide, water vapor, and other gasses into and out of the landscape. This particular tower is a 15 minute hike into a section of intact forest that was used as the control site during the fire experiment.
After checking and rechecking my tethers, a shout from Maracahipes-Santos, already at the top, signaled it was time to start the climb.
One hand up a rung, then the other. Feet to follow. Step, step, breathe. You’re supposed to lean back, let the harness hold you and push your weight up with your legs, but an unshakable instinct makes me pull tight to the ladder, so when I reach the top my forearms are shaking. Sweaty, breathless, flushed, but above the canopy at last. Maracahipes-Santos smiles and attaches my safety hook to one of the struts. Up here, we are taller than the trees.
From the top of the tower, you can read the history and future of this place, just by turning your head. Forest stretches to the horizon in one direction, an unbroken mosaic of deep green. In another, you can see massive rectangles of red dirt and uniform carpets of pale green soy cut into the landscape. Somewhere hidden behind a copse of planted eucalyptus are the corrugated metal roofs of the research station. Rain is falling on the horizon.
Not too many decades ago, this was all forest. Just another impossibly thick cluster of living organisms breathing and dying and growing anew in one of the most densely biodiverse ecosystems on the planet. Now, the vigilant scientific instruments whizzing away up here document its decline.
Research at Tanguro is driven by one big question: “What is the future of the Amazon?” But the answer to that question will depend — on scientists continuing to come to Tanguro to understand how this ecosystem is changing, on the field technicians making it possible to conduct science in the forest safely, on farmers taking pride in caring for the forests that stand on their land, on government officials building policies that reflect science, and on the decisions of people thousands of miles away to reverse climate change.
“When you’re doing research on this forest, you realize it is an amazingly tough system that is now being faced with tougher and tougher stresses and disturbances. So it needs help, and it needs to be given a chance, but it will continue,” says Nepstad. “And I think Tanguro has a big role to play in that.”
The past 20 years at Tanguro have done much to point the Amazon towards a more hopeful future. What will the next 20 bring?
“My hope,” says Rattis, “is that in 20 years we won’t be dealing with deforestation anymore. ‘Remember that time when we had to convince people not to cut down the forest? I’m so glad we’re past that.’”
Retrogressive thaw slumps (RTS) are extreme permafrost thaw landscape features, which occur when a section of ice-rich permafrost becomes warm enough to cause the ground ice to melt and soils to collapse. Once they start, RTS continue to expand and destroy nearby permafrost for months to years. Many RTS have been identified, but because they are often in extremely remote arctic locations, very little is known about the potentially substantial carbon emissions from RTS in the form of carbon dioxide and methane. This study will provide the first continuous measurements of carbon emissions from a RTS, collected over at least a year via an eddy covariance tower. The research is also supported by an equipment loan provided through the U.S. Department of Energy AmeriFlux Rapid Response program, which recognized this project as a valuable opportunity to advance science. The data collected will also serve as a “proof of concept” for a subsequent $1.3M proposal to the National Science Foundation for continued research at the site.
Freshwater ecosystems are significant sources of the greenhouse gases that persist in the atmosphere and contribute to warming. However, research is lacking an understanding of how disturbances like wildfire and agriculture can change these emissions. This project will address these information gaps by collecting measurements of carbon emissions from ponds, using autonomous floating chambers developed with funding from a previous FCS grant. With this new high-resolution data, the team will unlock the ability to predict year-round greenhouse gas emissions from ponds in the Arctic and the Amazon. Floating chambers will be deployed in ponds in Alaska affected by wildfires, and in agricultural reservoirs in the Amazon-Cerrado frontier. In both locations, the ability to take more frequent measurements of carbon emissions will help researchers improve models and better assess the ponds’ impacts on regional carbon budgets.
Established in 2008, the Polaris Project has earned global recognition for its leadership in Arctic research, education, and outreach. Through the commitment to providing students with hands-on experience, Polaris has enabled numerous publications and presentations. Polaris is approaching a critical juncture in the next funding cycle, and this project will complete the first-ever comprehensive synthesis of Polaris Project research to help sustain Woodwell Climate’s sole undergraduate research program. By consolidating past research and educational achievements, the team will create a data synthesis paper to be submitted to a peer-reviewed, open-access scientific research journal, as well as a retrospective analysis of undergraduates’ research experiences with Polaris to be submitted to an education research journal. The team will also launch an online communications piece that documents past Polaris participants’ field experiences and unique journeys with a variety of narrative and artistic communications styles and elements.
Coastal rivers, like those that flow into Massachusetts’ Buzzards Bay and Vineyard Sound, are fragile environments that serve critical ecological functions for native fish, downstream estuaries, and coastal wetlands. Different rivers are uniquely sensitive to changes in air temperature based on a variety of characteristics, such as their water source or shade. However, land use changes, including housing development and cranberry bogs, have affected key river characteristics and stream temperatures. This project will investigate MA coastal rivers’ sensitivity to changing air temperature, as well as how that sensitivity is affected by both connection to groundwater and the creation or restoration of cranberry bogs. The temperature sensors and geochemical analyses used in this research may be scalable beyond these rivers and yield insights to inform research approaches relevant to rivers around the world.
Seasonal weather forecasts hold immense potential to improve risk management from agricultural failure, water stress, and extreme events. However, significant advances in technical forecasting capabilities remain largely unavailable to communities without the resources to develop or customize them for their region. In 2023, Woodwell Climate Just Access co-produced a national climate risk assessment with the Democratic Republic of Congo’s Ministry of Environment and Sustainable Development. That report identified drought as a major climate threat to the DRC—one which stands to affect almost the entire country. In response, this project will develop a seasonal drought forecasting model tailored to the DRC using cutting-edge machine-learning methods. The forecast will be able to deliver precise rainfall anomaly predictions up to six months in advance for the whole country, and serve as an early warning system to help local people and decision-makers anticipate the impacts of escalating drought risk.
Learn more about the Fund for Climate Solutions.
Drought, driven by a combination of El Niño and climate change, has disrupted shipping through the Panama Canal in recent months. Dropping water levels in Lake Gatun forced Panama Canal authorities to pose restrictions on the number of ships that can pass the canal, dropping from the normal 38 down to 24 transits a day by November 2023, causing long queues at nearby ports as ships wait their turn to pass. If the restrictions remain in place through 2024, there could be up to 4,000 fewer ships—with cargo ranging from children’s toys, to solar panel components, to life-saving insulin—passing the canal in 2024. Delay and disruption along shipping routes will only become a more common occurrence in a warmer world. These 7 graphics show how drought threatens serious disruptions to the global supply chain.
Panama is currently suffering a prolonged drought that began in early 2023 and has not let up. In October, rainfall was 43% lower than average levels, making it the driest October since the 1950s. For the area around the canal, 2023 was one of the driest two years since record keeping began in the country.
Panama’s severe drought is being exacerbated by the double-whammy of a strong El Niño and record-breaking global warming— exceeding the pre-industrial temperature average by 1.35 C. El Niño is a natural climate fluctuation that brings warmer-than-average air and ocean waters to the West coast of the Americas. That influx of warmth can vary in strength and last between nine and twelve months, and the National Oceanic and Atmospheric Administration (NOAA) predicts it will continue into at least April of 2024.
The severity of El Niño fluctuations is linked to climate change. Climate modeling shows swings between El niño and its counterpart La niña have been growing more extreme, resulting in the more frequent and intense events seen in the past few decades Under high emission scenarios, in which we don’t get warming in check, El Niño events could become 15-20% stronger.
The drought has had a particularly profound effect on the man-made Gatún Lake, which holds the water supply that operates the Panama Canal. On January 1, 2024 water levels in Gatún Lake were lower than in any other January on record, almost 6 ft lower than January 1, 2023. Millions of gallons of water from Gatún, along with other regional lakes, are used to fill the locks that raise ships above sea level for the passage over Panama’s terrain. Insufficient water supply jeopardizes ship passage
Not only does Gatún Lake feed the locks that power the Canal, it also supplies drinking water to millions of residents in the central region of the country, including two major cities: Panama City and Colón. As both Panama’s population and the scale of global shipping has grown, there has been greater demand on the lake for freshwater.
In response to dropping water levels, Panama Canal Authorities have been forced to institute restrictions on ship passages. Ship transits are currently limited to 24 per day until April of 2024, when the authorities will re-evaluate at the start of the rainy season. The number of ship passages was 30% lower than usual by the end of 2023. The unreliability of transit through Panama has already prompted some ships to re-route.
Lower water levels also restrict the size of ships that can pass through the canal, as larger, heavier vessels sit lower in the water, putting them at higher risk of running aground in shallower waters. Large ships also require more lake water to lift them in the locks. As global shipping volume has grown, many shipping fleets have, too— relying on massive vessels that can carry more goods, but are harder to navigate through shallow waterways like the Panama Canal.
The Panama Canal accounts for 5% of global shipping, so disruptions here affect the worldwide supply chain, resulting in delayed shipments, more fuel usage, and GDP losses.
The impacts of shipping disruptions in the Panama Canal are also being compounded by political events in the Red Sea. The Suez Canal, an alternative route for ships bound between Europe and Asia, has also had shipping disrupted by attacks from the Houthis, a Yemeni military group targeting Israel-bound ships. With both the Panama and Suez Canals becoming less reliable routes, more ships will be forced to take the long way around— traveling down to the southern points of Africa and South America.
Far to the north, another waterway is being rapidly altered by climate change. As the Arctic warms faster than any other place on the planet, summer sea ice has been disappearing at a rate of almost 13% per decade. This has opened up new lanes of ice-free water that some countries are eying as potential new routes. But navigating through a melting Arctic is still dangerous, and the majority of new ship traffic in the Arctic is comprised of smaller military or fishing boats, rather than the large shipping vessels used to carry commercial cargo.
Furthermore, increased ship traffic in the Arctic has the potential to further emissions, as melting ice could open up access to new sources of oil and natural gas— perpetuating climate warming.
Though December rains saved Panama Canal officials from instituting further restrictions on ship passage, the region is still experiencing El Niño, and sea surface temperatures in early 2024 have continued to climb higher than 2023. Each day in 2024 has recorded the highest temperatures on record for that calendar date. The only path to stabilizing global shipping lies in stabilizing the global climate.
Summit County, Utah is preparing for a changing climate.
The high-elevation county boasts a strong winter sports economy, vast swaths of national forest and agricultural land, and a population of 43,000 people that stand to be affected by climate-driven changes. The risks to the county’s health and economy from climate change were outlined in a recent report by Woodwell Climate, and shared with the community through the first in a series of climate change and public health panels.
The risk assessment was completed as a part of the Center’s Just Access initiative to provide free climate risk insights to municipalities across the globe, in order to equip them for the changes ahead. Working with members of Summit County’s Sustainability Department, as well as members of the community at large, the Woodwell team targeted three major climate risk variables for analysis— drought, water scarcity, and wildfire.
According to Emily Quinton, Sustainability Program Manager for Summit County, these risks are ones the county is already concerned about, based on existing conditions, but wanted to know what that would mean for them in coming decades.
“We have some good baseline knowledge about the risks we are facing already,” Quinton said. “What was different and new that the Woodwell assessment could offer was those much longer-term future projections.”
In Summit County, the Sustainability Department is a subset of the Public Health Department, which encouraged the risk assessment to delve into the ways in which climate risks affect the health of county residents. Changes in water availability were a particular concern for the department.
The report found that the northern and easternmost portions of the county are most likely to be affected by drought. Summit County is already experiencing severe drought conditions 40% of the year; that number is expected to increase to 50% by midcentury.
Water scarcity will also increase. Driven by both increasing demand from the population and decreasing availability, water scarcity in most communities within Summit County is expected to be at 189% by 2030— meaning demand will be nearly twice that of available supply.
“With the drought and water scarcity topics,” said Quinton, “making the connection between how a decrease in water quantity will place risk on water quality was important. Monitoring water quality is a really crucial responsibility of the Public Health Department.”
Woodwell Research Assistant, Darcy Glenn, who worked previously in Summit County’s Sustainability Department and helped facilitate the production of the report says, “If you don’t have any water in your wells, water quality goes down because you don’t have enough to dilute any contaminant that might be a problem.”
Summit County currently grapples with wildfire threat as well. Wildfire danger days— in which temperature and moisture conditions make fires more likely to burn out of control— will become a more common occurrence, leading to fires that cause more evacuations, damage, and air quality concerns. The majority of the county will add eight or more wildfire danger days to their year by the end of the century.
Public health can be a less polarizing context in which to discuss climate risks publicly. Despite the political nature surrounding climate change in some regions, Glenn notes public health can serve as a lens most people relate to and take seriously.
“It can be hit or miss on climate change, but if your kid has asthma, you want to know about your air quality. Changes in the environment, whether people acknowledge climate change or not, align with things they’ve seen,” says Glenn. “So we’re trying to approach the topic in a way that’s accessible and start a conversation that’s welcoming to the whole community.”
After the completion of the assessment, Woodwell Risk team members presented the information to the Summit County Board of Health, then opened up communications with the public. In May, the county’s Health Department hosted the first of three planned events in a speaker series, focused on sharing the results of the report to help county residents better understand the extent of risk where they live. Glenn spoke alongside local climate experts and took questions from attendees.
The next two events in the series will discuss the physical and mental health impacts of climate change, as well as some potential adaptation solutions. According to Quinton, these events will aid the county in developing plans for resilience that address the top concerns of the public.
“Climate preparedness can’t happen without an understanding of what the potential risks are. The Climate Risk Assessment and the public events feel like important steps to more directly integrate climate change into the preparedness work Summit County is already doing,” says Quinton.
Drought in the Western U.S. has plunged the largest reservoir in the country into alarming shortage conditions that have rippling impacts for the region. Lake Mead, formed by the construction of the Hoover Dam on the Colorado River, delivers water and hydroelectric power to 25 million residents in the Southwest. But its viability has been pushed to the brink by intensifying drought, exacerbated by climate change, triggering emergency measures to conserve water in the basin.
The region has been in a “megadrought” since 2000, but recently, Lake Mead’s water levels have been breaking ever lower lows, unearthing old shipwrecks and other long-forgotten debris and leaving a “bathtub ring” around the reservoir’s edges. The drought signals a larger trend of dwindling snowfall and longer summers brought on by the growing climate crisis.
Water usage on the Colorado River operates on a tier system. When water levels in a reservoir drop below a certain point, usage by neighboring states is restricted. Lake Mead hit Tier 1 in August 2021 after the elevation of the reservoir dipped below 1,075 feet, leading to a reduction in water supplies that largely impacted agricultural users across counties.
This was the first time a shortage condition has been implemented on Lake Mead. The Tier 2 decision was announced in August of 2022—stating that the water level would fall below 1,050 by the end of the year, triggering a more intense shortage.
This emergency declaration for Lake Mead is part of a plan to increase the water levels in Lake Powell— an upstream reservoir and the second largest in the United States behind Mead. Dealing with shortages in the Colorado River Basin has required officials to weigh the needs of one region over another. The Bureau of Reclamation has indicated that at present, keeping water levels up in Lake Powell supersedes the requirements of Lake Mead. The generators at Powell have a total capacity of 1,320 megawatts and the reservoir is considered a ‘bank account’ for the region to draw on in times of drought—which are anticipated to worsen with climate change.
According to the US Drought Monitor, extreme droughts were rare in the historical climate—a 5.5% likelihood. In 2022 however, nearly all of the watersheds in the Colorado River experienced extreme drought. In a world warmed by 2 degrees C, the likelihood of 12 or more months of extreme drought in the Colorado River Basin becomes as high as 40%.
But Lake Mead also serves a massive population in the lower basin, and filling demand for water even during shortages means some major cities have to turn to reservoirs on other river systems. Arizona, suffering some of the steepest cuts in their allotment of Colorado River water (21%) , will draw from the Salt and Verde rivers. Other strategies include pumping groundwater and implementing more aggressive conservation and re-use strategies, which have so-far helped to spare Las Vegas from the worst effects of the shortage.
The Southern Nevada Water Authority also began using its low lake level intake in 2022, which allows the state to draw water even when the elevation of the lake falls below “dead pool” status— the point at which downstream water releases are no longer possible. But this is only a temporary solution, as the water in the reservoir keeps falling.
The next significant threshold for Lake Mead would be a drop to Tier 3 (1,025 feet) which some experts say could come as soon as 2024. At 950 feet, the reservoir would be considered an “inactive pool”, meaning the dam’s generators can no longer run. Energy shortages could kick off a vicious cycle, requiring backfilling with fossil fuels that would exacerbate the climate crisis and warming-driven drought conditions.
Reversing the drought in the Colorado River Basin will ultimately depend on snowfall in the Rocky Mountains, which will ultimately depend on getting the climate crisis under control. Experts estimate there would have to be several consecutive heavy snow years in the mountains to make back the current deficits further downriver. 2023 is currently experiencing above average snowpack, but if temperatures keep rising, that will be a less likely annual occurrence. Water rights and resource usage will have to adapt rapidly to support residents as reservoir levels continue to drop, but pulling out of emergency scarcity measures for good will require curbing the greater impacts of global climate change.
As the planet warms, drought is an increasing threat in many regions. Research led by Woodwell Research Assistant Isabelle Runde, modeled the frequency of drought across the globe, analyzing drought changes in forest, food, and energy systems as temperatures surpass 2, 3, and 4 degrees Celsius.
Models show that unlike in a stable climate, unreliable water resources and increasing temperatures make drought more likely in many places. For every increase of 0.5 degrees C, an additional 619 million people could become exposed to extreme drought 1 in every 4 years. This is in addition to the 1.7 billion people (nearly a quarter of today’s global population) who are already exposed to these conditions in a world that has warmed by a little more than 1 degree C.
Tropical forests are one of the planet’s key natural climate solutions— able to prevent 1 degree of warming through both carbon sequestration and regional cooling effects. Deforestation, fragmentation and degradation from things like fire, and disease threaten to turn these forests from a vital sink to a source of emissions.
In recent years, the Amazon has been a net carbon source due to increased extreme drought and deforestation, leaving the Congo rainforest as the world’s last remaining stable tropical forest carbon sink.
As warming surpasses 2 degrees, the annual likelihood of drought in the Congo rainforest begins increasing faster than in the Amazon. Drought can make a forest more susceptible to further degradation, such as fire or disease, and reduces carbon sink capacity by stressing or killing trees and placing the ecosystem under stress.
Global crop production is highly concentrated in key breadbasket regions— nearly 72% of the world’s maize, wheat, rice, and soy are produced in just 5 countries. Extreme drought can reduce the productivity levels of these staple crops, among others, potentially triggering widespread food insecurity, hunger and economic disruption.
By 2 degrees of warming, the probability of drought in the breadbasket regions of both China and the United States will be greater than 50% — meaning an extreme drought roughly every other year.
Disruption will be much higher in countries where jobs in agriculture comprise a large segment of the economy. In Mexico, one of the world’s top 10 producers of maize, 12% of the workforce is in agriculture and at 1 degree, the country already has among the greatest areas of cropland exposed to drought. 90% probabilities—indicating near-annual drought—begin to emerge in some parts of the country at 2 degrees of warming.This kind of recurrent extreme drought will stress water resources for agriculture.
The Mediterranean also is a drought hotspot. Drought probability in Mediterranean croplands will increase rapidly between 2 and 3 degrees of warming, rising from just 10% to over 50% of cropland affected by drought in 3 out of 4 years.
Hydroelectricity supplies a sixth of global energy demand, and is a low-cost, low-emission alternative to fossil fuels. The overwhelming majority of new hydropower plants since 1990 have been constructed in fast-growing, developing nations.
High dependence on hydropower makes countries like Brazil and China vulnerable to energy disruption during periods of drought. Brazil draws nearly two thirds of its energy from hydroelectric resources. During a three year drought between 2012 and 2015 in Brazil, hydroelectric generation declined by 20% each year. If warming exceeds 3 degrees C, more than half of Brazil’s hydroelectric capacity will experience a likelihood of annual drought greater than 50%.
Extreme drought can also be counterproductive to reducing carbon emissions. During years of drought, expensive fossil fuel based energy is often brought in to fill demands. In addition, droughts often coincide with extreme heat events, when electricity demand peaks to run air conditioners. Beyond 3 degrees of warming, more than a third of the planet’s hydroelectric capacity will likely be exposed to extreme drought every other year.
Current international climate goals aim to limit warming to between 1.5 and 2 degrees C, but without urgent intervention, we are on track to push past that limit to at least 2.5 degrees C. Projections past 2 degrees of warming show a future where extreme drought is common, exposing already-vulnerable people, places, and economies to greater water shortages, while making it even harder to curb emissions. In order to guard water resources and the systems that depend on them, emissions need to be cut rapidly. And places already feeling the impacts of warming will need to brace to adapt to a hotter, dryer version of the world.