La capitale congolaise Kinshasa s’étend sur la rive sud d’un coude turbulent et boueux du fleuve Congo. C’est ici que Glenn Bush, chercheur associé de Woodwell Climate, et Joseph Zambo, coordinateur des forêts et du changement climatique, ont rejoint d’autres chercheurs et responsables gouvernementaux dans les salles de conférence d’un hôtel du centre-ville pour un atelier de trois jours sur la tourbe.

Glenn Bush est un économiste et spécialiste des sciences sociales qui travaille depuis 16 ans en République démocratique du Congo (RDC), où il étudie les structures sociales et économiques qui déterminent l’utilisation des terres. Zambo est le reponsable de Woodwell Climate en RDC, et assure la liaison entre les résidents locaux, le gouvernement national et les chercheurs internationaux. Ces deux chercheurs se sont engagés à conseiller le gouvernement de RDC afin de l’aider à créer sa « contribution déterminée au niveau national » (CDN), qui définit l’engagement du pays à réduire ses émissions dans le cadre des Nations unies sur le changement climatique.

Les tourbières, un type d’écosystème humide, pourraient constituer un élément essentiel de la contribution de la RDC. Ces sols riches en carbone qui s’étendent sur de vastes surfaces de la forêt tropicale congolaise doivent impérativement être protégés. Des activités telles que l’agriculture, la déforestation et le changement climatique ont cependant déjà commencé à grignoter le précieux stock de carbone. Et une fois libérée, la tourbe prend des millénaires à se renouveler.

Qu’est-ce qu’une tourbière ?

Les tourbières du Congo se trouvent principalement dans les forêts humides et marécageuses dans le « centre du bassin » du Congo. Elles se forment sur les rives humides des cours d’eau – un environnement pauvre en oxygène qui ralentit le processus de décomposition, permettant à la matière organique de s’accumuler au fil du temps pour former un sol spongieux qui emprisonne le carbone, l’empêchant ainsi de rejoindre l’atmosphère.

La stabilité d’une tourbière dépend du taux d’humidité et des matières organiques. En cas d’assèchement d’un marais tourbeux, le carbone en contact avec l’air est immédiatement exposé à la décomposition et à l’érosion.

« Dès que les bactéries aérobies commencent à pénétrer dans la tourbière, explique Bush, tout ce carbone commence alors à devenir instable. Il est donc crucial d’éviter autant que possible de perturber cette tourbe. »

Mais, cette mesure est une action difficile à entreprendre de nos jours. La croissance démographique pousse les populations à s’enfoncer vers des marais boisés, exploités souvent pour l’agriculture, notamment pour la production du riz dans les zones humides ou la pisciculture, afin de subvenir aux besoins de leurs familles et de leurs communautés.

Les tourbières sont également extrêmement sensibles à la dégradation et à la déforestation dans le biome de la forêt tropicale. Au cœur du bassin du Congo, la forêt tropicale est en fait le moteur de la création de la plupart de ses propres pluies – la saison des pluies de printemps est déclenchée par l’humidité insufflée dans l’atmosphère par les plantes, plutôt que par le vent de la mer qui pénètre les terres. Face aux effets desséchants de la déforestation, le Congo est donc encore plus fragile que l’Amazonie.

« Pour chaque hectare de forêt perdu en Afrique, on perd proportionnellement plus de précipitations que pour une quantité similaire de forêt perdue en Amérique latine ou en Asie du Sud et du Sud-Est », explique Dr Mike Coe, directeur du programme Woodwell Climate Tropics.

Ce que nous ne savons pas sur les tourbières du Congo

Quelle est la superficie exacte des tourbières du bassin du Congo ? Et quelle serait la gravité de leur disparition en termes d’émissions ? La réponse à ces deux questions est « nous n’avons aucune donné précise ».

La recherche commence à peine à cartographier cet écosystème critique. Récemment, une équipe de chercheurs congolais et britanniques dirigée par le Dr Simon Lewis de l’université de Leeds a parcouru deux transects de 20 à 30 kilomètres de forêt marécageuse pour prélever des échantillons afin d’évaluer l’existence de tourbières. Ils en ont trouvé partout dans la forêt. Au total, on estime à 145 000 kilomètres carrés la superficie de la région.

Cela représente environ 30 milliards de tonnes de carbone, soit plus de 20 fois les émissions annuelles de combustibles fossiles des États-Unis.

« Il ne s’agit que de deux transects dans l’ensemble du bassin du Congo, mais qui nous ont permis de recalibrer les modèles existants d’étendue et de qualité des tourbières, et cela démontre que nous visitons un trésor de carbone tropical », insiste Bush.

Protéger les tourbières, c’est lutter contre la pauvreté

Protéger les tourbières est crucial, mais dans la pratique, elle est difficile à mettre en œuvre. Pourquoi ?

À l’heure actuelle, les tourbières sont plus utiles pour les congolais en tant que ressources foncières permettant de produire de la nourriture, de chasser, de pêcher et de récolter des plantes et des matériaux de construction, qu’en tant que forêt intacte. Selon certaines estimations, plus de 90 % de la déforestation dans le pays a pour but de soutenir l’agriculture de subsistance. C’est une nécessité pour près des trois quarts de la population du pays qui vit avec moins de 2,15 $ par jour.

En 2020, Zambo et Bush, accompagnés de Kathleen Savage, chercheuse principale à Woodwell, ont mené des études sur les méthodes d’intensification agricole dans les rizières humides, qui sont souvent créées sur des tourbières déboisées. L’application de techniques agricoles différentes, consistant à désherber et à s’occuper des plants de riz tout au long de la saison plutôt que de voyager et de revenir pour la récolte, permettaient un augmentation considérable des rendements sur la même surface, ce qui réduit la nécessité d’augmenter de grignoter la forêt pour augmenter la productivité.

« Rien qu’en s’occupant du riz, on pourrait peut-être sauver environ 30 % de la forêt », explique Savage.

Les agriculteurs ont reconnu les avantages de cette méthode, mais hésitent à l’adopter. En attendant la croissance du riz, le temps est souvent consacré à gagner un revenu supplémentaire pour les charges immédiates. Tabler sur un revenu plus conséquent à la fin de la saison est un risque qu’ils ne veulent pas toujours se permettre. Une bonne récolte n’est pas garantie ; les parasites, la sécheresse ou les inondations peuvent anéantir le travail d’une année, laissant les agriculteurs sans revenu. Cette fragilité pousse les populations à prendre des décisions difficiles quant à l’utilisation des forêts.

« La RDC ne dispose d’aucun filet de sécurité sociale », rappel Savage. « En fait, le filet de sécurité sociale, c’est la forêt – la chasse, l’abattage d’un arbre et la vente du bois parce qu’il vaut beaucoup d’argent. »

Les marchés du carbone pourraient orienter l’argent vers les communautés forestières

Afin d’éviter la déforestation et la dégradation des tourbières, les communautés rurales devront trouver une autre source de revenus. Bush et Zambo ont discuté du potentiel des marchés du carbone pour fournir ces revenus.

Les marchés du carbone sont des systèmes d’échange qui attribuent une valeur monétaire à la prévention de l’émission de carbone dans l’atmosphère ou à son élimination active. Ils fonctionnent sur la base de la vente de « crédits carbone » qui représentent théoriquement une tonne métrique de carbone stockée ou séquestrée grâce à des pratiques de gestion des terres. Idéalement, l’argent provenant de leur achat va directement aux personnes qui gèrent les terres, qu’il s’agisse d’un agriculteur qui protège les forêts ou d’un groupe communautaire qui restaure les zones dégradées.

En réalité, les crédits carbone sont difficiles à vérifier en raison de la faiblesse des réglementations et du manque de données.

« Le problème du crédit carbone est que personne n’est vraiment sûr de la qualité et des normes de livraison, ni de la manière de les mesurer et de les contrôler, car il est évident que quelqu’un ne se présente pas à votre porte avec un sac rempli de carbone », nuance Bush.

Jusqu’à présent, la mise en œuvre du marché a été entravée par des accusations d’écoblanchiment de la part des entreprises polluantes qui achètent des compensations et par des programmes réglementaires gouvernementaux qui peinent à prouver le bénéfice sur le climat et la biodiversité. Bush et Zambo estiment néanmoins qu’une version de cette solution pourrait apporter des revenus plus conséquents directement aux agriculteurs si elle est bien appliquée.

Bush travaille avec l’équipe carbone de Woodwell Climate à l’élaboration d’un indice de capital paysager (ICP) qui utilise des normes scientifiques pour évaluer le potentiel de toute parcelle de terre à atténuer les effets du changement climatique et à offrir d’autres avantages tels que la biodiversité et le cycle de l’eau. Une fois affiné, l’indice fournira des données permettant de vérifier les crédits carbones.

Zambo s’est beaucoup a mené des discussions approfondies avec le ministère de l’Environnement sur le plan national zéro émission. Avec Bush, il espère qu’un marché du carbone soutenu par la science pourrait générer des moyens économiques pour financer de nombreux projets de développement durable décrits dans le plan.

« La validation du carbone stocké dans cet écosystème pourrait générer beaucoup d’argent dans le pays pour le développement », déclare Zambo.

Renforcer les capacités du Congo

Un autre obstacle à la mise en œuvre d’un marché du carbone efficace est de trouver des données disponibles pour alimenter l’ICP. Comme souligné par Bush, les données actuelles sur le carbone des tourbières ne sont basées que sur une fine tranche de l’ensemble du bassin. Le financement des projets de conservation au niveau local nécessite une compréhension beaucoup plus détaillée de l’étendue et de la qualité du carbone présent dans l’ensemble de l’écosystème. La collecte de ce type de données nécessitera davantage de scientifiques – des scientifiques congolais – et davantage de compétences techniques chez les fonctionnaires qui pourraient être responsables de la gestion des programmes de conservation à l’avenir.

« La RDC doit renforcer ses capacités en matière de cartographie des tourbières afin d’élaborer une stratégie nationale spécifique aux tourbières », explique Zambo.

L’atelier auquel ont participé Bush et Zambo à Kinshasa étaient principalement basé sur le renforcement des capacités.

« Cet atelier revêtait d’une importance capitale dans la mesure où il a permis le partage des connaissances et des avancées au sujet de la collecte de données sur les tourbières, devant permettre au gouvernement congolais d’identifier les données manquantes, de sensibiliser les parties prenantes et de créer des synergies entre les tourbières et d’autres initiatives climatiques », explique M. Zambo.

Il faudrait également appuyer les capacités scientifiques avec des ressources technologiques supplémentaires. Savage a travaillé avec l’assistante de recherche Zoë Dietrich pour mettre au point des chambres de surveillance du méthane portables et peu coûteuses, qui seront utilisées sur des sites de recherche de terrain au Brésil et en Alaska. Savage estime qu’il est possible d’adapter la conception de ces chambres pour la situation en RDC, afin de surveiller les flux de carbone dans les forêts des zones humides.

« Actuellement, en termes de comptabilisation du carbone, [la RDC] utilise des mesures estimées à partir d’un autre pays similaire et l’on suppose que c’est également ce que font leurs forêts. Mais pour obtenir des chiffres précis, il faut vraiment passer à des mesures directes », explique Savage.

L’avenir durable de la RDC

Beaucoup reste à faire pour que les marchés du carbone deviennent un mécanisme de financement viable pour les grands efforts de conservation en RDC. La durabilité et la croissance économique se résumeront en fin de compte à fournir aux ménages ruraux des alternatives pragmatiques de subsistance et à développer un sentiment de sécurité financière. Mais Bush espère que l’enthousiasme suscité par leur potentiel pourrait contribuer à faire traverser l’impasse des discussions, non seulement sur la conservation et le climat, mais aussi sur la gouvernance économique du pays à plus grande échelle.

Après tout, le marché du carbone est un marché au même titre que ceux qui vendent des sacs de riz ou du bois de valeur.

« Une fois que les acheteurs et les vendeurs ont compris la valeur fondamentale de ce qu’ils achètent et vendent, ils ont besoin des mêmes conditions-cadres pour fonctionner que n’importe quel marché », explique Bush. « Bonne gouvernance, transparence et respect de l’État de droit. »

Zambo envisage également une solution. En raison des avantages qu’elles procurent à l’écosystème, la valorisation des tourbières peut contribuer à améliorer la situation partout en RDC.

« J’espère que la conservation, la protection, la gestion et le développement des tourbières et des forêts congolaises pourront être un moteur clé du développement durable du pays », conclut Zambo.

On the southern bank of a turbulent, muddy-brown bend in the Congo River, sits the Congolese capital of Kinshasa. Here, Woodwell Climate Associate Scientist, Dr. Glenn Bush and Forests and Climate Change Coordinator, Joseph Zambo, have joined other researchers and government officials in the conference rooms of a downtown hotel for a three-day workshop about peat.

Bush is an economist and social scientist who has worked in the Democratic Republic of Congo (DRC) for 16 years, studying the social and economic structures that shape land use. Zambo leads Woodwell Climate’s work from the DRC side, liaising between local residents, the national government, and international researchers. The pair of them are hard at work advising on the creation of the DRC’s Nationally Determined Contribution (NDC), which outlines the country’s commitment to emissions reductions within the UN climate change framework.

Peatlands, a type of wetland, could be a critical element in the DRC’s contributions. Underlying large swaths of the Congo Rainforest, these carbon-packed soils are critical to protect. But disturbances like agriculture, deforestation, and climate change have already begun nibbling at the valuable stock of carbon. And once it is released, it takes millennia to replace.

What is a peatland?

Congo peatlands are found primarily in the wet, marshy forests of the country’s “Cuvette Central” or Central Basin. They form on the water-soaked banks of stream channels—an oxygen-poor environment that slows the decomposition process, allowing organic matter to build up over time into a spongy soil that locks away carbon, preventing it from re-joining the atmosphere.

A stable peatland relies on wetness. Draining a peat swamp immediately exposes that carbon to decomposition and erosion when it touches air.

“As soon as aerobic bacteria start getting in there,” says Bush. “Then all that carbon starts to become unstable. So the idea is, we just need to not disturb that peat as much as possible.”

But avoiding disturbance is a difficult thing to do these days. As populations grow, people are pushing further into forested marshland margins, often modifying them for agricultural uses like wetland rice production or fish farming to support their families and communities.

Peatlands are also extremely sensitive to degradation and deforestation across the rainforest biome. In the Congo Basin, the rainforest is actually responsible for creating most of its own rain—the spring rainy season is triggered by moisture breathed into the atmosphere by plants, rather than blown inland from the sea. This makes the Congo even more sensitive than the Amazon when it comes to the drying effects of deforestation.

“For every hectare of forest you lose in Africa, you lose proportionately more rainfall than you do for a similar amount of forest loss in Latin America or in South and Southeast Asia,” says Woodwell Climate Tropics Program Director, Dr. Mike Coe.

What we don’t know about the Congo’s peatlands

So exactly how much peatland does the Congo Basin hold? And how bad would it be in terms of emissions to lose them? The answer to both is “we don’t know for certain.”

Research has only just begun to give size and shape to this critical ecosystem. Recently, a collaborative Congolese and British team led by Dr. Simon Lewis of the University of Leeds walked two 20-30 kilometer transects of marshy forest, taking core samples to assess the existence of peatland. They found it everywhere beneath the forest. All told, an estimated 145,000 square kilometers across the entire region.

That translates to an estimated 30 billion metric tons of carbon—more than 20 times the United States’ annual fossil fuel emissions.

“It’s only two transects in the whole of the Congo Basin, but using that, we’ve been able to recalibrate existing models of peatland extent and quality, and it basically shows we’re sitting on a tropical carbon treasure trove,” says Bush.

Peatland protection is poverty alleviation

So protecting peatlands is important, but in practice, it’s a hard thing to accomplish. Why?

Right now, peatlands are more valuable to the people of DRC as a land resource to produce food, hunt, fish and harvest plants and materials for building, than as untouched forest. Some estimates indicate more than 90% of deforestation in the country occurs to support subsistence agriculture. It’s a necessity for the nearly three quarters of the country’s population that lives on less than $2.15 a day.

In 2020, Zambo and Bush, alongside Woodwell Senior Research Scientist Kathleen Savage, conducted research into methods of agricultural intensification in rice paddy wetlands which are often created on deforested peatland. Applying different farming methods, involving weeding and tending to rice plants throughout the full season rather than traveling and returning for the harvest, significantly boosted yields over the same area, meaning less pressure to expand into the forest to increase productivity.

“Just by tending the rice, you could perhaps save about 30% of the forest,” says Savage.

Farmers recognized the benefit of this method, but were hesitant to adopt it. That time spent not tending to rice is often spent working to earn extra cash to pay immediate expenses. Waiting for a larger payout at the end of the season is not always a risk they are able to take. A good crop is not guaranteed; pests, drought, or floods could all wipe out a year’s worth of work, leaving farmers with no income. That uncertainty pushes people to make tough decisions about how to use forests.

“There’s no social safety net,” says Savage. “Well actually, the social safety net is the forest—hunting, chopping a tree down and selling the lumber because it’s worth a lot of money.”

Carbon markets could direct money to forest communities

To prevent deforestation and degradation of peatland, rural communities will need an alternative source of income. Bush and Zambo have been discussing the potential for carbon markets to supply that income.

Carbon markets are a finance mechanism that places a monetary value on preventing carbon from entering the atmosphere—or actively removing it. They function on the sale of “carbon credits” which theoretically represent one metric ton of carbon kept stored or sequestered through land management practices. Ideally, money from their purchase goes directly to the people managing the land—whether that’s a farmer protecting forests or a community group restoring degraded areas.

In reality, however, carbon credits have been challenging to verify because of weak regulations and lack of data.

“The problem with the carbon credit is nobody’s really sure about quality and standards for delivery or how to measure and monitor them because, obviously, somebody doesn’t turn up on your doorstep with a bag full of carbon,” says Bush.

So far, market implementation has been plagued by accusations of greenwashing for polluting corporations who buy offsets and government regulatory programs unable to prove positive climate and biodiversity impacts. But Bush and Zambo see potential for a version of this solution to bring more wealth directly into farmers’ hands if done right.

Bush is working with the Carbon team at Woodwell Climate on the development of a Landscape Capital Index (LCI) that uses scientific standards to assess the potential of any tract of land to deliver climate mitigation and other benefits like biodiversity and water cycling. Once refined, the Index will provide data against which carbon credits can be checked.

Zambo has been deeply involved in conversations with the Ministry of Environment around the country’s National Net Zero Plan. Both he and Bush hope that a science-backed carbon market could make many of the sustainable development projects outlined in the plan economically feasible.

“The validation of carbon stored in this ecosystem could generate a lot of money in the country for development,” says Zambo.

Building Congolese Capacity

Another obstacle to implementing an effective carbon market is finding available data to feed the LCI. As Bush mentioned, current information on peatland carbon is based on only a thin slice of the entire watershed. In order to provide payments for local-level conservation projects, we need a much more granular understanding of the extent and quality of carbon across the entire ecosystem. Collecting that kind of data will require more scientists—Congolese scientists—and more technical capacity among officials who could be responsible for managing conservation programs in the future.

“DRC needs capacity building in the mapping of peatland areas to develop a national strategy specific to peatlands,” says Zambo.

Capacity building was a large part of the workshop in Bush and Zambo attended in Kinshasa.

“This workshop was very important in the context of sharing knowledge and advances in data collection about peatlands, in order to enable the Congolese government to identify missing data, raise awareness among stakeholders, and create synergies between peatlands and other climate initiatives,” says Zambo.

Additional technological resources could also help bolster scientific capacity. Savage has been working with Research Assistant Zoë Dietrich to develop inexpensive, portable, methane monitoring chambers for use at field research sites in Brazil and Alaska. Savage sees the potential to adapt the chamber design for use in the DRC monitoring carbon fluxes in wetland forests.

“Right now, in terms of carbon accounting, [the DRC] is using measurements estimated from another similar country and the assumption is that’s what their forests are doing, too. But in order to get accurate numbers, they really need to move to direct measurements,” says Savage.

DRC’s sustainable future

There is much work to be done to build carbon markets into a viable funding mechanism for large conservation efforts in the DRC. Sustainability and economic growth will ultimately come down to providing rural households with pragmatic livelihood alternatives, and developing a sense of financial security. But Bush hopes the excitement around their potential could help push forward difficult conversations, not just around conservation and climate, but about economic governance within the country on a larger scale.

The carbon market, after all, is a market just like the ones selling sacks of rice or valuable timber.

“Once the buyers and sellers understand the basic value of what is being bought and sold, then it requires the same framework conditions to operate as any market needs,” says Bush. “Good governance, transparency and adherence to the rule of law.”

Zambo sees a path forward as well. One where valuing peatlands for their ecosystem benefits can help lift up all of DRC.

“I hope that the conservation, protection, management, and development of peatlands and forests in the DRC can be a key driver for the country’s sustainable development,” says Zambo.

Air quality monitoring to machine learning: Fund for Climate Solutions awards six new grants

The second round of 2024 Fund for Climate Solutions (FCS) awardees has been announced. The FCS advances innovative, solutions-oriented climate science through a competitive, internal, and cross-disciplinary funding process. Generous donor support has enabled us to raise more than $10 million towards the FCS, funding 69 research grants since 2018. The latest cohort of grantees includes three projects focused on driving impact through collaboration and community-building, and three projects exploring new horizons in technology with timely policy relevance.

Arctic wildfire pollutants: Towards improving emissions estimates and developing tribally-led monitoring

Lead: Scott Zolkos
Collaborators: Brendan Rogers, Sue Natali, Kyle Arndt, Elise Sunderland (Harvard University)

Increasing wildfire activity in northern high-latitude regions is threatening global climate goals and public health. When organic matter in soils and vegetation burns, greenhouse gasses, fine particulates (PM2.5), and contaminants including mercury are released to the environment. Currently, there is sparse data for understanding how wildfires contribute to the northern mercury cycle, as well as gaps in infrastructure for monitoring PM2.5 in Alaska Native communities. This project will develop a network to measure and monitor the release of mercury and PM2.5 from wildfire, with an emphasis on peatlands. Leveraging ongoing work by Permafrost Pathways, the team will install mercury sampling equipment on existing eddy covariance flux towers across Alaska and Canada. Alongside Permafrost Pathways and their tribal partners, the team will also consult with Alaska Native communities in the Yukon-Kuskokwim Delta to co-develop a tribally-led air quality monitoring program.

Workshop: Innovative sensors and applications in environmental research

Lead: Kathleen Savage
Collaborators: Zoë Dietrich, Marcia Macedo

Many of the Woods Hole science community’s cutting-edge researchers, including several scientists at Woodwell Climate, are developing creative, do-it-yourself (DIY) tools using relatively simple components to further explore their research questions. However, despite the six institutions’ similar applications and geographic proximity, there are few opportunities for exchange and knowledge, both across Woods Hole institutions and more broadly with Cape Cod educational institutions. The project team will convene a one-day workshop to bring together aquatic, atmospheric, and terrestrial science researchers and educators from the Woods Hole science community and local community colleges. The event will focus on three main themes: development of new sensor systems that use existing technologies in novel ways; new data storage or transmission solutions; and community initiatives to facilitate continued creation and sharing of new technologies. Sessions will foster knowledge exchange, build networks, and develop community resources focused on innovative DIY research solutions, and a hybrid virtual option will be offered for oral presentations to broaden participation.

Soil Spectroscopy for Global Good network

Lead: José Lucas Safanelli
Collaborators: Jonathan Sanderman

The Soil Spectroscopy for Global Good (SS4GG) initiative is a collaborative network of hundreds of soil scientists and others focused on using soil spectroscopy as a means to generate high-quality soil data at significantly reduced costs. It was created in 2020 by the Woodwell Climate Research Center, the University of Florida, and the OpenGeoHub Foundation (the Netherlands) with support from many national and international institutions and researchers. SS4GG created and supports the Open Soil Spectral Library (OSSL), an open source of soil spectroscopy data, and a broad community of practitioners uses the library and collaborates on related science. This award will extend the activities of the SS4GG initiative with a focus on training and further engagement with the soil science community. The project team will continue to add data sets and new models to the OSSL, as well as engage with the soil science community by attending international conferences and providing a training workshop. The funds will also support hosting a visiting soil biogeochemist at the Woodwell Climate campus—Dr. Raj Setia from the Punjab Remote Sensing Center.

Pathways of carbon metabolism under cover crops

Lead: Taniya RoyChowdhury
Collaborator: Jonathan Sanderman

Sequestering, or capturing carbon in soils has a high potential to mitigate climate change. It is challenging to specifically predict how successful carbon sequestration may be, as current models used to evaluate agronomic management oversimplify soil microbial properties. This project will test for the key pathways of carbon transformations using soil samples taken under cover crops from a long-term study site. The team will quantify the chemical diversity of carbon substrates that microbes in the soil take up, and use data mining to predict the impacts of that diversity on soil carbon sequestration and nutrient cycling. The research outcomes will also lay a foundation for future collaborative research within the Department of Energy scientific community, and the soil health research community more broadly.

Bringing confidence to carbon markets through improved monitoring

Lead: Seth Gorelik
Collaborator: Wayne Walker

The protection, improved management, and restoration of forests are key nature-based solutions to the climate crisis, yet implementation and maintenance of these forest-based solutions requires sustainable and substantial financing. The voluntary carbon market (VCM) has the potential to deliver the necessary level of financing; however, a significant gap exists between its potential and actual performance. Improving the accuracy of forest carbon monitoring is crucial for the VCM to deliver effective, meaningful climate change mitigation. This project will enhance the credibility and effectiveness of forest carbon markets by evaluating new remote sensing methods for measuring forest carbon and showing that these methods provide more robust data than the conventional approach. Research findings could lead to updated global standards and policies for issuing carbon credits, which would increase market confidence and promote sustainable forest management.

Applying machine learning models to link river hydrology and fire risk forecasting in the Amazon

Lead: Andrea D. de Almeida Castanho
Collaborators: Michael Coe, Marcia Macedo

In recent decades, extreme drought events have increased forest flammability, fire severity, and the likelihood of fire escaping and spreading into adjacent forests and working lands, as illustrated by the wildfires seen throughout Amazonia during the 2023-24 drought. The project team will explore the potential of using river stage (water level) data as a proxy for landscape dryness, to ultimately reveal the short-term risk of wildfires spreading into forests. If confirmed, this innovative hypothesis could provide the scientific basis for developing new metrics of river stage to improve early-warning systems that forecast high fire risk days to weeks in advance. These improvements would create benefits not only for tropical forest protection, but also for biodiversity, greenhouse gas emissions, and human health.

COP 28, the annual meeting of United Nations delegates to set goals and report progress on addressing climate change, closed last week in Dubai after a two-week rollercoaster that was both promising and discouraging. When weak draft language surfaced, just a few days before negotiations were set to close, shying away from any clear call to eliminate fossil fuels, the outlook was not optimistic. But nearly overnight, representatives managed to arrive at a deal. For the first time in 28 years of negotiations, the final agreement included direct reference to the need to “transition away from fossil fuels in energy systems, in a just, orderly, and equitable manner.”

The language is not as strong as many hoped, but it still represents a historic step forward, and came as a positive surprise after controversy surrounding the oil interests of the host country.

“We’ve known from COP number one that fossil fuels are a major cause of the problem with respect to climate change, but the reality is that it wasn’t until COP28 that the words ‘fossil fuels’ were actually recognized in the agreement,” says Woodwell Climate CEO and President, Dr. Max Holmes. “It’s really late in the game, but I think it’s important that this was finally recognized. Yet words are not actions, and much more needs to be done.”

International agreements were also made to reduce methane emissions generated by fossil fuel extraction and triple renewable energy by 2030, as well as enact the agreed-upon Loss and Damage fund created last year, which will use contributions from wealthier countries to support those suffering the worst climate-related impacts.

Progress also occurred on many smaller stages at COP28. Woodwell Climate had a strong presence, sending 16 scientists and staff to advocate on a variety of issues, including increased ambition in curbing emissions, funding for adaptation measures, action around permafrost and tropical forest issues, and improvements in transparency around carbon markets. Here are some of our key highlights and takeaways from COP28.

Protecting tropical forests

One core tenet of the Center’s research is the value of protecting and restoring natural ecosystems for both their intrinsic and climate importance. A check-in on pledges to end deforestation by 2030 shows they are mostly going unmet, but the final agreement did include language that acknowledged the importance of “protecting, conserving, and restoring forests”, which Woodwell Carbon Program Director, Dr. Wayne Walker, notes was another significant inclusion this year.

“Nature has a tremendous role to play and that’s really what this section is trying to emphasize: the importance of bringing nature to bear in the mitigation conversation alongside transitioning away from fossil fuels,” said Dr. Walker.

Woodwell Climate used this year’s COP to build and deepen partnerships that advance efforts to protect the carbon-storage powerhouses that are tropical forests. For example, Woodwell Climate hosted a discussion with Health in Harmony and Pawanka Fund about the power of  investing in Indigenous-led climate solutions. 

“Woodwell has been partnering increasingly with organizations like Health in Harmony and Pawanka fund, who are really strong advocates of Indigenous self-determination”, says Dr. Walker. “Pawanka Fund is a really great example of an Indigenous-led fund that provides direct support to Indigenous initiatives focused on promoting and protecting traditional knowledge, well-being, rights, and self-determined solutions to a whole host of issues. Organizations like [them] are critical to properly compensating Indigenous peoples for their contributions to climate change mitigation.”

Climate risk and carbon markets

On December 5, Woodwell Climate announced the release of a new report in partnership with the Ministry of the Environment and Sustainable Development (MEDD) of the Democratic Republic of Congo (DRC). The report was the culmination of a multi-year collaboration to generate a localized, customized, cost-free climate risk assessment for the country that details both challenges and solutions. 

“This report was two years in the making, and was only possible because of close collaboration between Woodwell scientists, government leaders in the DRC, and experts at the University of Kinshasa,” says Woodwell Chief of Government Relations. “Our goal was to provide an actionable risk assessment that could directly inform Congolese policymaking. We developed that, but our partnership also identified the need for increased scientific and technical capacity, as well as a new framework for carbon market regulation.” 

The assessment identified improved carbon credit integrity as a mechanism to fund climate adaptation projects in the DRC and support forest preservation as a critical natural climate solution.

“We and others think carbon markets will have tremendous potential for bringing large amounts of capital to the ground to the people into the places responsible for implementing natural climate solutions,” says Dr. Walker. “But there’s no question that right now, carbon markets are plagued with all sorts of problems. There’s a lot of work to be done if they’re to function properly, sustainably, equitably.”

Pushing for permafrost accountability

Unfortunately, neither the Arctic nor permafrost were mentioned in the COP28 final agreement and Woodwell Climate Arctic Program Director, Dr. Sue Natali, says it is crucial that changes.

“Permafrost emissions can consume about 20% of our remaining carbon budget to avoid 1.5 C, and there will be much greater emissions from permafrost if we overshoot 1.5 C,” says Dr. Natali.

Dr. Natali spoke at several events in the Woodwell Climate space as well as in the Cryosphere Pavilion during Permafrost Day. Top of mind was not only the need to incorporate permafrost emissions into global carbon budgets, but also the need for Loss and Damage funding to extend to Northern communities being displaced by thawing and eroding permafrost. Discussions around Loss and Damage funding are currently focused on supporting countries in the global south, but many Arctic communities are grappling with decisions about relocation and adaptation, and have been for decades.

“These communities who already have very limited land are losing it to permafrost thaw, wildfire, increased storm impacts. This has been going on for a really long time and they urgently need resources,” Dr. Natali said. 

Where the rubber meets the road

“These high-minded Nationally Determined Commitments are ambitious in their target setting, but the national level policy is where they become reality,” says McGlinchey. Emphasizing that we will have to wait and see how the promises made at this year’s COP are enacted by different nations. During the conference, the Woodwell Climate meeting space was visited by two US senators, Ed Markey of Massachusetts and Lisa Murkowski of Alaska, who showed interest in permafrost and other climate issues.

Looking towards COP29, which will be hosted in Azerbaijan, the hope is that ambition and national commitments will increase, because while progress was made in this year’s agreement, it was nowhere near big enough to limit warming to below 1.5 degrees celsius. With current warming at around 1.2 degrees, we will have to be swift and decisive.

“This past year was a remarkable one— the hottest on record. The impacts of climate change are here and are being felt by people here and around the world. And that adds urgency,” says Dr. Holmes.

For the full debrief of COP28, you can watch our Webinar here.

At COP28, Woodwell Climate Research Center and the Ministry of the Environment and Sustainable Development (MEDD) of the Democratic Republic of Congo (DRC) have jointly released a new report, From Risk to Resilience: A strategic assessment of challenges and solutions to scaling climate mitigation and adaptation in the Democratic Republic of Congo.

“This is a very important tool,” said Benjamin Toirambe, DRC Secretary-General of the Environment. “There’s a real need for this, you can’t simply be feeling your way in the dark. If today the Minister of Agriculture has a risk analysis, he can guide his decision making based on what is happening in the field.”

“It really points towards the need to make much more critical investments in basic science to support this type of model, and support more efficient policy implementation,” said Dr. Glenn Bush, Associate Scientist at Woodwell Climate Research Center. 

The report is based on a collaboration that began last year between Woodwell Climate and MEDD to generate a localized, customized, cost-free climate risk assessment. It examines a range of climate change threats to forests and agriculture in the region – including drought, heat stress, agricultural yields, extreme precipitation, flooding, and wildfire – and finds that these threats necessitate swift climate adaptation action, particularly by enhancing carbon credit integrity and scaling finance mechanisms in order to fund necessary adaptation efforts and support forest preservation as a critical natural climate solution.

“I am very pleased that the report has been adopted by both parties,” said Joseph Zambo, who facilitated the collaboration as Woodwell Climate’s focal point in the DRC. “This report comes at a good time for the DRC, as the country is engaged in several processes to combat climate change. This report will serve as a sustainable and real support to prevent climate risks and find ways to find solutions at scale.”

“The DRC’s landscapes are one of the greatest insurances against future climate risks—a natural climate solution to prevent further warming and avoid the worst harm from climate change. Carbon markets represent one of the most important and effective tools we have to protect them,” said Dr. Bush.

To support disaster risk reduction and climate change adaptation planning, the report offers policy recommendations, including: creating more stable and reliable observational networks and data records; scaling up agricultural research and extension services; improving field inventory and remote sensing monitoring systems; and building community awareness of climate impacts. Additionally, specific policy recommendations related to financing include: 

“What’s particularly interesting is the comparison we have done with the initial data provided by NDCs and compared to forecasting and models used by Woodwell,” said Professor Onesphore Mutshail Kuval of the University of Kinshasa. “This made it possible for us in DRC to propose certain types of adaptation in the context of the carbon market, based on risk assessments provided by this forecasting model. We have a whole series of proposed adaptation measures, and these were devised in conjunction with the models provided to us.”

The report was officially released during the 2023 United Nations climate change conference, or Conference of the Parties, COP28, at a panel event, The intersection between adaptation and mitigation, and implications for developing the New Climate Economy. The event was co-hosted by Woodwell Climate and the DRC, and focused on discussing the report’s findings in the context of emerging priority policy and management pathways to a green economy.

The full report can be read here.

“Talk to Jim. Jim knows everything.”

That’s what everyone told Woodwell Assistant Scientist, Dr. Jennifer Watts, when she started writing up a research plan to study soil carbon on U.S. rangelands. “And indeed, he does,” Dr. Watts says. “He knows everything about the region, about grazing management, species management, anything having to do with land management on these ranches.”

With his felt Stetson, dusty jeans, and perennial tan, ranch manager Jim Howell looks a bit like the kind of cowboy Hollywood might dream up. And in a way he is—despite looking at home on the range, Howell grew up in Southern California. But he spent his summers out in Colorado’s Cimarron mountains, working on his grandfather’s cattle ranch.

Those summers were Howell’s introduction to the idea that the way livestock are managed can change their impact on the land—a thread that would pull him through a college degree in animal production, towards a career “knowing everything” about holistic ranch management. He was first clued into this concept while walking the fence line separating his family’s property from a patch of public land being used to graze sheep.

“I noticed there were lots of very healthy, perennial, bunch grasses on the sheep side, while our side of the fence had degraded to mostly silver sagebrush, Kentucky bluegrass, and dandelions,” says Howell. “And I just didn’t understand why the differences were so stark.”

Howell’s cattle were stocked continuously on the land, low in number but able to graze year round, while the sheep grazing permit required rotation. There might be a great flock of sheep up there one day and nothing but grass for the remainder of the year. That difference, it turned out, dramatically altered the kinds of plants that could flourish on the land.

“I became aware then that the way that we’d been managing our cows in our country up there was leading to its slow, long-term, ecological degradation. And I didn’t know what to do about it,” says Howell.

The grazer makes the range

There have always been animals grazing the American West—before colonizers, even before native peoples. On the Great Plains there were bison; in the mountains and high altitude deserts of Southwestern Colorado, it was bighorn sheep and pronghorn antelope, as well as elk and mule deer. All three are rare sights now, with populations decimated by overhunting and habitat degradation.

Now, if you see any animal grazing on these ranges, it’ll probably be cattle.

Despite displacing native species, cows can still fill a natural niche in the rangeland ecosystem. Antelope, bison, sheep, and cows all belong to a group of animals called ruminants—animals that can digest grass. Many grasslands have co-evolved with ruminant species; their roaming feasts influence plant growth the same way pruning might affect the shape of a tree. Occasional shearing by a hungry cow stimulates new grass growth. It also creates a more competitive environment that supports a diverse array of plant species.

Grazing also plays a part in cycling nutrients and storing carbon in the soil. In a frequently dry climate like this one, digestion breaks down plant matter much faster than it would decay in the environment. Manure fertilizes new plant growth and returns carbon to the soil. Let this process continue unencumbered for a couple hundred thousand years, and you can build up a valuable carbon sink. And as long as the number of cattle isn’t rising, the oft-cited methane emissions from cow burps are minimal and cycled back down into the plants that grow up after grazing.

Since settlers arrived, however, the land has been put through centuries of abuse. Public lands were, for a long time, left open to unregulated grazing. Many rangelands have been over-stocked and grazed too frequently in order to make a profit and meet growing global beef demand. Land has been ecologically degraded, valuable topsoil was lost, and carbon stores declined as a result.

Let the cow do the work

It would be easy to blame cows for this. But really, they’re not behaving much differently than pronghorn or bison would. They eat what’s in front of them. And they eat the tastier plants first. Howell likens it to a salad bar.

“If you go into a salad bar and there’s some lettuce that has been sitting there for three months, and some of it that’s just been replaced that morning, you take the new stuff. So that’s exactly what the cow does,” Howell says. “If she’s not made to move anywhere new, she’s just going to keep coming back and grazing the regrowth of the good stuff as long as it’s there.”

Pretty soon, perennial grass species, important for their deep roots that help prevent erosion and store carbon and water longer, are grazed into nothing. All that’s left are the sagebrush, dandelions, and other less desirable plants that Howell noticed dotting his family ranch.

“So the whole thing is about how the cows are managed, it’s not the cow itself that is a problem,” says Howell.

But if bad management can degrade the land, then good management should be able to  restore it. While studying animal science in college, Howell encountered the concepts of “holistic management”, a term that began to decode this relationship between management practices and the health of the land. Controversial at its introduction a half century ago, holistic ranching has been gaining traction, and Howell and his ranch management company, Grasslands LLC, have helped urge its uptake.

The core principle is to make management decisions that restore lands and keep cattle in balance with the rest of the ecosystem—helping them fill the niche of the ancient grazers. This comes with a host of co-benefits, including water retention and higher plant productivity, that actually end up improving economic profitability for ranches in the long run. Simple adjustments, like lengthening the time between grazing a pasture again and wintering cows on native ranges instead of hay, can turn cattle from an ecosystem destroyer to an ecosystem helper.

“The trick is to let the cows do all the hard work,” says Howell.

Carbon modeling: The rancher’s secret weapon

Dr. Watts and Woodwell Senior Scientist Dr. Jonathan Sanderman, along with Dr. Megan Machmuller of Colorado State University, are interested in quantifying those co-benefits. Especially carbon storage.

“In the western US on our rangelands, just like in our croplands, we can change how we manage in a way that potentially could become a natural climate solution,” says Dr. Watts. “One where we’re bringing in more carbon than we’re emitting and we’re creating ecosystems that not only are beneficial for carbon sequestration, but also have more biodiversity, offer more habitat for wildlife, and more water conservation.”

In order to prove that value however, scientists need a baseline understanding of how much carbon is currently stored across both traditionally-and holistically-managed rangelands. It’s hard to get an estimate for such a large area (roughly 30% of the U.S. is covered with rangelands), so they are using a remote sensing model, which they verify with strategic on-the-ground sampling.

Howell’s work also created the perfect conditions for the research team to study the long term carbon benefits of altered ranching practices, which is a tricky thing to test empirically. Ranchers must constantly adjust their management techniques to stay profitable.

“In a classical research setting, you try to control all the variables but one, but in real life that’s not what happens,” says Howell. “Nothing is controlled. Day to day, you have to adapt to constantly changing conditions.”

But the ranches Howell’s company works with make those day-to-day decisions based on the principles of holistic management, so tracking carbon on those ranches over time offers the opportunity to generate baseline data on how they differ from more traditionally managed ones.

Howell also brought the expertise of a life spent on the range. He can identify just about any plant growing in the pasture, tell you which are native, which are invasive, and which used to be the preferred food of prehistoric ground sloths. His eye is trained to see diversity even in martian-esque deserts and read the history of the land in the structure of the soil. In May of 2022, Howell guided Drs. Sanderman, Watts, and Machmuller and their teams on a sample collection trip through Southwest Colorado and Utah. The researchers took soil cores, plant samples, moisture and temperature readings, and analyzed carbon fluxing in and out of the pasture.

The ultimate goal is to create a rangeland carbon management tool that will make the soil carbon data model accessible directly to ranch managers. Dr. Watts hopes having that data in hand will enable more ranchers to make management decisions with climate in mind. Dr. Sanderman also notes that it could be useful in eventually helping ranchers get paid for sustainable practices.

“Rangelands haven’t been included in voluntary carbon credit markets like cropping systems have,” says Dr. Sanderman. “Monitoring is a big problem because there’s so much land—How do you keep track of all that? That’s what our tool will be able to offer.”

Growing a resilient ranch

There are limits to what grazing can accomplish, though. The lands out west aren’t suitable for large-scale cropping, being too dry or too mountainous, which makes them perfect for cattle. But when the animals take up space on land that would otherwise be used to produce crops—or worse, penned into feedlots—their benefits are compromised. Howell also notes that some grazing lands are already as saturated with carbon as they can be. And there remains the fact that ranching will get more complicated as the climate changes.

At the Valdez ranch in Delta, Colorado, Dr. Sanderman and research assistant Colleen Smith unfold a collapsible table in a field of cracking mud, dotted with the brittle stick skeletons of dead grass. Nearby, Dr. Machmuller is assisting Howell in extracting a long metal cylinder from the ground. It was plunged into the soil by a hydraulic corer attached to a pickup truck that’s idling in the field. Howell and Dr. Machmuller lay it out horizontally on the table and slide out the soil core—a 50 centimeter long history of the land beneath their feet.

Howell breaks open a section of the core with his fingers, revealing clusters of white crystals. This is a pasture that has been abused; over-irrigation by previous owners brought salts to the surface. Now nothing will grow here and wind gusts threaten to blow away loose topsoil. It’s a sacrifice zone. The current owners are considering installing solar panels instead.

Water is a big issue for ranchers and it’s threatening to get bigger. The region is constantly dipping in and out of severe drought, and in a place that depends heavily on winter snows for its groundwater and rivers, a warmer, drier climate is a threat.

Agriculture will depend more on irrigation as the climate warms and precipitation patterns change. But this empty pasture is proof that it’s not always a viable solution, and will become less so as climate change advances.

It enforces the urgency of the work Howell and team are doing. The faster we can draw carbon out of the atmosphere, the more successful these ranches are likely to be in the long term. The better managed the ranch, the more resilient it will be in the face of tough conditions.

In the end, Dr. Watts says, the outcome rests in the hands of ranch managers—people like Howell.

“Land managers are the ones that ultimately are going to make or break this country.”

They keep us cool, we cut them down

Standing forests are our best natural climate solution. So why aren’t we treating them that way?

In terms of climate mitigation, forests are like green gold—working overtime to cool the planet, while also supporting a wealth of biodiversity. But we have not been saving them as one would a precious asset. Despite pledges to end deforestation, old growth forests are being cut down at alarming rates. And planting new trees is widely prioritized and incentivized over protecting existing forests. Across the board, standing forests are vastly undervalued. This has to change if we are to stand a chance of limiting warming to internationally agreed targets.

Forests are global air conditioners

According to a recent study from scientists at Woodwell and the University of Virginia, tropical forests alone are holding back approximately 1 degree Celsius of warming. About 75% of that cooling effect is due to carbon sequestration. Forests grow, trees lock away carbon in their trunks and roots and shunt it into the soil. The other 25% comes from the innate properties of forests that work to cool vast regions of the globe.

Through photosynthesis, plants release water vapor into the air in a process called evapotranspiration. The vapor contributes to cooling near the ground, as well as cloud formation higher in the atmosphere that reduces incoming solar radiation. The shape of the tree canopy also contributes. So-called canopy “roughness” disrupts air flow above the forest. The more uneven the canopy, the more turbulent the air, which disperses heat away from the surface. In the tropics, evapotranspiration and canopy roughness are high, which means that surface temperatures remain relatively low, with the heat dispersed throughout the deep atmosphere.

Forests also naturally produce molecules called biogenic volatile organic compounds (BVOC), which can either contribute to cooling by encouraging the formation of clouds, or to warming by creating ozone and methane. In the tropics, the net effect of these chemicals is cooling.

The cumulative result of these properties is that when forests are removed, the land around them begins to heat up even faster, which can increase the frequency of extreme heat and drought events. Without forests, some regions will become a lot less resilient to sudden shocks. And the release of carbon contributes to global warming which further exacerbates hot, dry conditions.

“Forests act like air conditioners,” says Woodwell Assistant Scientist, Dr. Ludmila Rattis, who studies the impacts of deforestation on agriculture in Brazil. “Deforesting in the face of climate change is like getting rid of your air conditioners before an upcoming heatwave.”

Not all forests are created equally

Protecting forests, and maintaining the cooling services they provide, is vital to limiting warming. But, with forests covering 30% of the Earth’s land, prioritizing protection is a massive task. And when it comes to carbon storage, not all forests are equally valuable. Older, healthier forests tend to have a more secure hold on their carbon.

“Mature forests have higher biodiversity and create their own microclimate,” says Woodwell Associate Scientist, Brendan Rogers. “They’re more resistant to drought and other types of disturbance. And because of that, they tend to be more stable in the face of environmental perturbations over time.”

New research from Woodwell and Griffith University has developed a method of identifying high-value forests using satellite imagery. Estimating the metric of “forest stability” through satellite data on the light reflected by vegetation and a water stress index of the tree canopy, researchers were able to determine gradients of stability within forest patches in the Amazon and boreal forests.

Using a gradient of forest stability allows for a better prioritization of forest protection strategies based on their carbon value.

“The first priority is to protect stable forests from further human disturbance,” says paper co-author Dr. Brendan Mackey. “The second priority is to identify forest areas where restoration efforts will be most cost effective.”

Guarding the forests that guard our future

But if the state of existing forests is any indication, forest protection continues to be deprioritized. Many wildfires are left to burn unless they threaten human settlements. Governments continue to incentivize deforestation for development or agricultural expansion. Indigenous and local communities are not compensated for their work stewarding their territories and keeping forests safe. And the warmer the planet gets, the more susceptible even protected forests become to drought, fire, and disease.

Research has shown that stewarding standing primary forests, and reviving degraded ones, represents the greatest opportunity for near-term carbon storage and removal. A study of global land-based carbon storage potential found that improved management of existing forests alone could store approximately 215 billion metric tons more than they currently do.

Protecting forests is cost effective, too. For example, in the United States, investing in fire fighting in Alaska’s boreal forests would require just $13 per ton of CO2 emissions avoided. That’s easily on par with other mitigation strategies like onshore wind or solar energy generation.

Effective strategies for protecting forests already exist, they’ve just been suffering from a lack of force—and often funding—behind their implementation. For example, forest carbon markets—where landowners and forest stewards are paid to protect standing forests that are otherwise vulnerable to deforestation—have the potential to keep forests safe while offsetting emissions from other sectors. But nascent carbon markets are inefficient, with weak standards for verifying the quality of credits being sold, and lacking the transparency needed to ensure credits are actually reducing overall emissions, rather than greenwashing carbon-intensive business practices.

Credits are also priced incorrectly for their relative climate value—the market currently values reforestation credits more highly, reducing incentive for landowners to conserve standing, old-growth forests when there is a better livelihood to be made in legally deforesting land for  other uses. A truly effective carbon markets system would require large investments in science that can verify credit standards.

Forests are like our global carbon savings accounts—when we cut them down, we’re drawing out money and limiting our ability to collect interest and keep growing our funds. Successful mitigation can’t be accomplished without taking the full value of forests into account and strengthening policies to reflect that. If they aren’t, the planet will pay a far greater price for it as temperatures rise.

“We can’t afford to keep cutting forests. We need to reduce emissions now, and protecting forests is one of our best available solutions. Despite the obstacles, it’s worth the investment,” says Dr. Rogers.

Giving carbon a home on the range

Adapting ranching practices in the US could increase carbon sequestered in the American West

man standing on ranch rangeland near Bozeman Montana, photo by Jonathan Sanderman
Rangelands occupy more than three quarters of global agricultural land. Many of the world’s native grassland ecosystems have been converted to grazing land for livestock, altering their ecology and changing the flow of carbon on the landscape. However, these lands still have the potential to be a powerful carbon sink if properly managed.

On September 27 and 28, Woodwell Climate Research Center convened a workshop in collaboration with Montana State University (MSU) and Turner Ranches to open discussions on rangeland management in the United States. The workshop took place in Bozeman, Montana, and brought together scientists, ranchers, and conservationists to share their perspectives on rangeland ecology, carbon sequestration, fire management, and herd health, as well as anecdotes from careers spent on the range.

“Montana offers a great location for this conversation because the majority of the state is amazing rangeland including unique grassland and sagebrush steppe environments, in many cases privately held,” said Dr. Stephanie Ewing, an Associate Professor at MSU who co-organized the event. “And because we have a strong academic and extension community at MSU that has been engaged with rangelands and rangeland managers over time.”

Day one began with a series of presentations and panels meant to facilitate discussion about rangeland management. Sessions covered rangeland ecosystem services, rangelands in the American West, management for carbon sequestration, carbon markets, and tools for rangeland monitoring.

For Dr. Jennifer Watts, Woodwell Assistant Scientist, the discussions highlighted the vast untapped potential of rangelands to play a positive part in climate mitigation.

“There’s so much rangeland in the western U.S. and so there is a huge potential for improving ecosystems and improving carbon sequestration and storage,” Dr. Watts said. “But the public doesn’t perceive rangelands with the same reverence that we do with forests or other ecosystems. I think if we start to value them at the national level, and realize the potential for ecosystem services and climate mitigation, that could shape how policy is going to move forward.”

The following day, attendees made site visits to two ranches in the area—Red Bluff Ranch, run by MSU, and Green Ranch, owned by Turner Enterprises—for a hands-on look at the topics they had discussed the day before. They examined soil pits, dug into the grass, and talked about different land management styles.

For Senior Scientist Dr. Jonathan Sanderman, the trip into the field was a catalytic moment in the workshop.

“After just a few hours on the ranches, I felt like a lot of people had lightbulbs go off about how long-term management has affected certain parts of land more than others, and how that feeds back to the soils,” Dr. Sanderman said.

One theme that emerged from the workshop was the need for more and better information on how rangelands could be included in carbon markets. While there was interest from landholders in participating, very few knew enough to get started. Drs. Watts and Sanderman hope future collaborations will allow them to dig deeper into the topic with ranchers.

“A well-functioning carbon market can provide climate benefits and an additional revenue stream, enhancing the economic resilience of ranching communities,” Dr. Sanderman said. “Quantifying and monetizing carbon sequestration from improved grazing management is still in its infancy. This means there is a lot of confusion and few agreed upon standards; but, it is also an opportunity to shape policies and design programs that benefit people and the environment.”

It also became evident that, while many ranchers were interested in carbon storage on their lands, what mattered more to them was the possibility of integrated benefits from holistic range management. Improving carbon storage in the soils can improve water management, nutrient retention, and other ecosystem services.

“Carbon is something that brings it all together,” Dr. Watts said.