The rapid warming of the Arctic has caused substantial sea-ice melt, increased ice-free area, and enhanced evaporation from Arctic Marginal Seas (AMS). According to a recent study, the resulting increased atmospheric moisture and latent energy have profound implications for precipitation patterns over Northern Hemisphere land areas.
During the cold season (October to March) from 1980 to 2021, the sea-ice area in AMS declined by nearly 30% (approximately 2 million square kilometers), accounting for 32% of the increase in AMS-sourced precipitation on lands in the Northern Hemisphere land. This means that for every one million square kilometers of ice loss there was a 16% increase in the contribution of water evaporated from AMS to precipitation over land.
“The study reveals that the enhanced moisture supply has a surprisingly pronounced impact on high-latitude land precipitation,” stated the corresponding author, Dr. Qiuhong Tang. Despite AMS-sourced moisture accounting for only 8% of the total high-latitude land precipitation, its dramatic increase owing to ice loss contributed 42% to the overall precipitation increase. “This additional moisture has also contributed to increased extreme snowfall in high-latitude land areas,” added the lead author and Ph.D. candidate Yubo Liu, “which could help mitigate the impact of climate warming on melting of the Greenland ice sheet.”
“Our findings highlight the important contribution of Arctic sea-ice retreat to Northern Hemisphere land precipitation through moisture cycling, which underscores the many impacts of rapid Arctic change on the global climate system,” added co-author Dr. Jennifer A. Francis. “These insights help inform decision-makers striving to manage impacts of the climate crisis.”
“Why not float the aquatic greenhouse gas chamber on a surfboard?” Tropics Program Director Dr. Mike Coe suggested in one of our team meetings, and I could feel the gears in my brain begin turning. I started a sketch… If mounted on a surfboard, we would need a method to open the chamber, flushing it with outside air. Back in my office, I asked Google “what turns electrical energy into mechanical energy?” Google was quick to respond, “Motor.” Right, thank you, Google. Next, I typed, “motor that pushes something up.” Google replied, “linear actuator.” Three clicks later and I had ordered my first linear actuator for 35 bucks.
Three days later, that linear actuator sat expectantly on my desk. One red wire and one black wire, “12V DC” printed on its side. I turned back to Google, “How to wire a linear actuator?” Opening the first hit, I skimmed through the photos and diagrams. None of them striking my fancy, I moved on to the second hit: Step-by-step instructions, clear photos, even open-source code to program my Arduino microcontroller board – nice! Within an hour, my linear actuator was extending and retracting on command, ready to be mounted in an autonomous greenhouse gas chamber.
Adding the actuator to my sketch, I popped into Senior Research Scientist Kathleen Savage’s office to hear her thoughts. Savage always has new ideas brewing, and she suggested adding a feature that would allow the chamber to function on water and on land. The chambers are the product of a Fund for Climate Solutions (FCS) grant led by Savage to quantify carbon dioxide and methane emissions from small water bodies like lakes, ponds, and reservoirs. Because there are no low-cost and auto-sampling tools available on the market, we have been developing a new instrument to measure these emissions.
“Chamber” is a fancy word for the upside-down buckets we use to measure how fast greenhouse gasses are released from different surfaces. By resting a bucket upside-down on a patch of soil or grass or water and measuring how fast gas concentrations increase or decrease inside the bucket, we can calculate a “flux” of gas over a set area and time. Common methods of measuring fluxes require manually collecting gas samples from a chamber to be processed in a lab, or connecting the chamber to a high precision analyzer that can cost around $40,000. These methods are costly in salary time and equipment, limiting where, when, and how often people can sample—usually daytime and in accessible areas and times of the year. We need new low-cost and autonomous systems that can measure around the clock to improve carbon emissions estimates. The recent commercialization of cheaper sensors and control systems to operate them, like the Arduino microcontroller, now make these developments possible.
I’m building a new floating chamber that measures aquatic fluxes autonomously using a $15 methane sensor and a $78 carbon dioxide sensor, improving previous designs published by Dr. David Bastviken’s group at Linköping University in Sweden. Powered by a solar panel and battery, the sensors measure gas concentrations, temperature, and humidity inside the chamber every 30 seconds. The data is stored on an SD card and transmitted within 50 meters via radio. The radio transmission allows us to check that the chamber is functioning properly from the shore and to see chamber measurements in real time. When gas concentrations have increased enough to discern a flux, the linear actuator extends to open the chamber, flushing the interior with outside air before retracting to close the chamber again for another flux measurement. Calibrating the chamber with a high precision analyzer in the field shows the low-cost sensors perform well, with an accuracy of approximately 1 ppm for methane and 3 ppm for carbon dioxide.
I first tested chamber prototypes last July on agricultural reservoirs at the Tanguro Field Station in Brazil. At the end of our field campaign, I left one chamber deployed to see how long the electronics would last and which components might eventually fail. After helping me deploy and calibrate the chamber, field technician Raimundo “Santarém” Quintino monitored it, checking its “vital signs” via radio every few weeks. In January, he noticed the linear actuator had stopped pushing the chamber open.
During a follow-up field campaign in March, I brought a couple of extra linear actuators and five more chambers to deploy on additional reservoirs at Tanguro. Tanguro staff and I worked together to modify chamber components that didn’t function well in the first deployment. These modifications included swapping the materials of the floating foam bases and improving the mounting mechanisms of the linear actuator and chamber hinge. Our adjustments were informed by recommendations from a Laboratory Operations Manager at the University of Maine in Orono (Christopher London), whom I met while doing fieldwork at the nearby Howland Research Forest. Woods Hole locals, such as John Driscoll and Fred Palmer of the Woodwell Climate Facilities department, kite foiler and carpenter Tad Ryan, and employees at Eastman’s Hardware, have also offered transformative recommendations on building materials and techniques to stabilize the floating chambers.
Working hands-on with the floating chambers on the reservoirs, Santarém, Dr. Leonardo Maracahipes-Santos, Tanguro’s Scientific Projects Coordinator, and Sebastião “Seu Bate” Nascimento of Tanguro Field Station have made invaluable improvements to the chamber design and deployments. A few of their contributions include advice on safe deployment locations, monitoring and collecting data from the chambers over time, and constructing aluminum and galvanized steel components for the floating bases. They also designed a new mount for the most recent chamber addition—a bubble trap that uses an inexpensive pressure sensor to autonomously measure the volume of gas released as bubbles.
Freshwater ecosystems worldwide emit nearly half as much carbon dioxide and methane as fossil fuel combustion. On the Amazon-Cerrado frontier, where Tanguro is located, there are hundreds of thousands of small agricultural reservoirs, which are important, yet overlooked, greenhouse gas sources. These artificial ponds—installed to provide drinking water for cattle, facilitate road crossings, or supply energy at the farm scale—can persist for decades, creating low-oxygen conditions that drive methane production. Monthly sampling of six reservoirs over a year by Water Program Director Dr. Marcia Macedo revealed high methane and carbon dioxide emissions, varying with season and reservoir size. But these measurements did not capture the significant variability that can occur on daily, monthly, and annual time scales, including transient “hot spots” and “hot moments” of high greenhouse gas emissions.
This lack of frequent measurements hinders climate scientists’ ability to integrate emissions at the reservoir scale in order to estimate cumulative greenhouse gas emissions at the landscape scale. The autonomous floating chambers will address that gap, enabling comprehensive carbon monitoring and modeling of the reservoirs.
Additionally, these chambers are versatile tools that can be used across different environments. Funded by a subsequent FCS grant, six new floating chambers will accompany me to the Yukon-Kuskokwim Delta, Alaska, this summer to measure greenhouse gas emissions from Arctic ponds. The chambers will supply the frequent data necessary to constrain the LAKE model utilized by Arctic Program scientists Dr. Elchin Jafarov and Andrew Mullen. The model predicts variations in carbon emissions from ponds, providing insight into processes regulating methane and carbon dioxide. By applying the LAKE model to both Arctic ponds and Amazon reservoirs, we can gain a deeper understanding of their impacts on regional greenhouse gas budgets.
“Deploying floating chambers will streamline the process of gathering aquatic data and enhance the temporal resolution of the data, which is vital for modeling and currently absent in existing datasets,” notes Jafarov.
While calibrating the low-cost sensors in our boat one March afternoon, Santarém and I noticed the linear actuator on another nearby chamber wasn’t retracting and extending as it should. Expecting another replacement was in store, we tuned into the radio and popped open the electronics case to check for “symptoms.” Blinking lights and radio silence revealed an entirely new and perplexing issue causing the malfunction.
Building this system from the ground up over the last year, the one constant has been mind-bending electronics puzzles that keep me up at night. As a biogeochemist by training, these problems usually require some tinkering, a dictionary, a lot of Googling, and sometimes bugging electrical engineers down the street at the Woods Hole Oceanographic Institution (Lane Abrams) and Spark Climate Solutions (Bashir Ziady), whose advice and contributions have substantially improved the chambers’ electrical designs. Each problem can usually be traced to a perfectly logical, satisfying solution, leaving me feeling wiser and excited to tackle the next one. I’ve tracked this new problem down to something potentially involving a “memory-leaking variable declaration” in my new bubble trap programming code. I might’ve fixed it with a “watchdog timer.” Both are new words for me, too. If the watchdog timer doesn’t pan out, Santarém and I will try another fix.
Designing, building, and testing these chambers has been an iterative and constantly evolving process. What works well? What doesn’t? How can we do this more simply? Using less energy? For a lower cost? How can we improve the design so that other researchers can easily build these floating chambers as well? Soon we plan to publish open-source instructions detailing how to build and troubleshoot the floating chambers—I have already sent preliminary instructions to three interested research groups. I’m lucky to collaborate with many talented people from Woods Hole to Maine and Brazil, many of whom are as new to chambers and fluxes as I am to engineering. Nevertheless, these floating chambers incorporate a brilliant flourish from each of them.
The Arctic Ocean is mostly enclosed by the coldest parts of the Northern Hemisphere’s continents, ringed in by Siberia, Alaska and the Canadian Arctic, with only a small opening to the Pacific through the Bering Strait, and some narrow channels through the labyrinth of Canada’s Arctic archipelago.
But east of Greenland, there’s a stretch of open water about 1,300 miles across where the Arctic can pour its icy heart out to the North Atlantic. Those flows include increasing surges of cold and fresh water from melted ice, and a new study in the journal Weather and Climate Dynamics shows how those pulses can set off a chain reaction from the ocean to the atmosphere that ends up causing summer heatwaves and droughts in Europe.
Read more on Inside Climate News.
Two new Polaris Project Alumni have been named John Schade Memorial Scholarship recipients. The fund, established in the memory of Dr. John Schade, who founded Polaris and was integral to its success, is dedicated to supporting the higher education goals of students that reflect Dr. Schade’s values of mentorship, education, leadership, equity, and the advancement of Arctic science.
Mandala Pham studies geophysics and history at the University of Texas at Austin. As an undergraduate researcher, she has explored the caves of central Texas, studied marine geophysics in Corpus Christi Bay, and peered back in time to past climates through geology. Her experience in different lab groups spurred her interest in field work, driving her to pursue graduate opportunities to continue getting up close with geology.
During her Polaris experience, however, Pham’s research focused less on geology and more on ecology. Inspired by her father’s affinity for beautiful, rare, and sometimes poisonous mushrooms, Pham studied the response of Arctic mushroom species to wildfire, comparing biodiversity between burned and unburned areas of land.
As part of Polaris, Pham saw a glacier in person for the first time, which reinforced her commitment to dedicate her career to studying and fighting climate change.
“From childhood anxieties to professional aspirations, I’ve taken tackling climate change as my personal direction in life,” says Pham. “I want to be part of the solution rather than spending my time ruminating on the worst-case scenarios.”
She hopes to get her Ph.D. in geophysics, studying glaciology. After that she has aspirations for either full time research or a career in the National Parks Services. Pham is also interested in screenwriting, pig farming, and perhaps one day, becoming a lighthouse keeper.
Aaron MacDonald’s passion for ecology began during his childhood spent on long family camping trips. Through his studies at University of Toronto, MacDonald has gained experience in oceanography and fisheries science through the Woods Hole Partnership Education Program (PEP) and the National Oceanic and Atmospheric Administration (NOAA) Inclusive Fisheries Internship. His field experience bolstered his confidence to pursue a scientific career.
With Polaris, MacDonald studied the role of willow ptarmigan, a common Arctic ground bird, as drivers of ecosystem dynamics on the tundra. For his career, he hopes to pursue a graduate degree and get involved with mentorship programs like Polaris. MacDonald firmly believes everyone should have the opportunity to study science, and is grateful for the support he received that has allowed him to pursue this career.
“Everyone who wants to is capable of scientific research and everyone has a place in STEM,” says MacDonald. “I have questioned many times if there is a place for me in STEM, but with the support of those around me I am determined to make it.”
In his spare time, MacDonald enjoys running and video games with friends.
Both recipients will receive funding to continue their education and pursuit of science, mentorship, and equity, encouraging a new generation of Arctic scientists working to change the world.
This year, Woodwell Climate’s Just Access Initiative went global. Just Access works in close partnership with communities to provide tailored, actionable climate risk reports for Rio Branco, Brazil; Addis Ababa, Ethiopia; Summit County, Utah; and Lawrence, MA. At COP28, Just Access released their latest report in collaboration with the Ministry of Environment and Sustainable Development of the DRC, which focused on climate risks and potential solutions in the country and identified carbon markets as a potential funding mechanism for adaptation efforts.
Just Access collaborates with local officials and advocates to ensure the final reports cover information critical to their community’s planning. So far, 14 reports have been completed and more are on the way.
Read the report.
In January of 2023, the Biden Administration restored protections against logging and road-building for more than 9 million acres of the Tongass National Forest, the world’s largest intact temperate rainforest.
This came after Woodwell Climate’s Dr. Wayne Walker and Geospatial Analyst Seth Gorelik, along with long-time collaborator Dr. Dominick DellaSalla of Wild Heritage, delivered a research report to the Biden administration showing massive carbon stores in Tongass National Forest and highlighting the importance of roadless areas.
In 2023, Science on the Fly’s (SOTF) focused their activities on stewarding their community of scientists. Together they collected more than 3,000 water samples from hundreds of locations around the globe. SOTF leverages the passion and dedication of the global fly fishing community to gather data on the health of rivers across the world. With this data, SOTF can improve our understanding of how watersheds and river systems change over time due to climate change and local effects.
Read about the project’s activities this year.
We sent 10 Polaris Project students into the field this summer. The Polaris Project engages the brightest young minds from a diversity of backgrounds to tackle global climate research in one of Earth’s most vulnerable environments: the Arctic.
Students conducted their own research projects over two weeks at a field research station near Bethel, Alaska. Afterwards, they returned to the Center to analyze samples, and presented their findings at the American Geophysical Union meeting in December.
Woodwell Climate also hosted several interns through the Partnership Education Program. These undergraduate students participated in research and communications activities across the center.
Read PEP intern, Jonathan Kopeliovich’s story about research in Howland Forest.
Woodwell Climate has been conducting tropical forest research in Brazil for nearly two decades alongside partner organization IPAM Amazônia. This year, Water Program Director, Dr. Marcia Macedo and collaborators, including Dr. Ane Alencar of IPAM, convened a multi-day workshop in Brazil that produced a policy brief on forest degradation. They then organized experts to submit public comments on Brazil’s updated policy for controlling Amazon deforestation, which for the first time also addresses forest degradation.
Read the policy brief here.
Across the globe, Permafrost Pathways partner, Alaska Institute for Justice (AIJ), hosted a “Rights, Resilience, and Community-Led Adaptation” workshop on Dena’ina homelands in Anchorage, Alaska. The two-day workshop created space for Tribes to share their expertise with each other and connect face-to-face with federal and state government representatives to access resources and technical assistance.
Read more about the workshop.
Our experts showed up as thought leaders this year at several high profile events. As just a few examples, Woodwell Climate’s Arctic Program Director Dr. Sue Natali and Senior Science Policy Advisor Peter Frumhoff both spoke on panels alongside other leading voices in climate at SxSW in Austin, TX. Senior Geospatial Analyst, Greg Fiske attended the Esri User Conference, where his topographic map of Alaska garnered two awards. And Assistant Scientist, Dr. Ludmilla Rattis gave a talk at TED Countdown about her research on the role of Tapirs in rainforest restoration. (Recording coming in early 2024)
Woodwell Climate team members showed up in over 5,000 media stories this year. Our scientific leadership provided quotes for a broad range of high profile climate stories in New York Times, Reuters, Boston Globe, CNN and Grist, just to name a few. Senior Scientist Dr. Jen Francis was quoted over 4.2K times, appearing in major news outlets like the Washington Post and AP News to provide accessible context about the links between climate change and extreme weather events.
Last fall, Scotty Creek Research Station in Canada—one of the only Indigenous-led climate research stations in the world—was almost entirely consumed by a late-season wildfire. Woodwell Climate’s Permafrost Pathways project is providing rebuilding support to the Łı́ı́dlı̨ı̨ Kų́ę́ First Nation. Project scientists Dr. Kyle Arndt and Marco Montemayor visited the site for two weeks this spring to restore an essential carbon monitoring tower.
Read the story of Scotty Creek.
Our researchers published 80 peer-reviewed scientific publications this year. From the Arctic to the Tropics, from soil concentrations to river concentrations, Woodwell Climate had a part in discovery.
Recent trends in the chemistry of major northern rivers signal widespread Arctic change
Grain-cropping suitability for evaluating the agricultural land use change in Brazil
Explore all our publications.
Woodwell Climate’s President & CEO Dr. Max Holmes brought Woodwell Climate to the main stage of CERAWeek, Green Accelerator Davos, GenZero Climate Summit in Singapore, Climate Week NYC, and Mountainfilm Festival. He discussed cutting-edge climate science alongside notable figures like Bill McKibben and former Colombian President Iván Duque Márquez.Read about Dr. Holmes’ time at Davos.
Woodwell Climate’s Arctic Program Senior Scientist and Permafrost Pathways Lead Dr. Sue Natali was appointed by U.S. Secretary of the Interior Deb Haaland as a member of the new federal Advisory Council for Climate Adaptation Science.
Read more on Permafrost Pathways’ website.
The loss of Arctic sea ice has been a conspicuous hallmark of climate change. But the rate of loss slowed after sea ice extent hit a record low in summer 2012, even though global and Arctic warming continued unabated. New research by an international team of scientists explains what’s behind that perplexing trend. The findings indicate that the stall is linked to an atmospheric wind pattern known as the Arctic dipole, and that stronger declines in sea ice extent will likely resume when the dipole reverses itself in its naturally recurring cycle.
The many environmental responses to the Arctic dipole are described in a paper published recently in the journal Nature Geoscience on long-term trends in pan-Arctic river chemistry. The team found strong signals of environmental change for some chemical constituents, but not in others. Alkalinity, which reflects rock weathering, increased in all rivers, while nitrate, an important nutrient for terrestrial and aquatic organisms, decreased. The authors hope the data and insights from this work will be invaluable to scientists refining models of the Arctic system.
“There’s nothing quite like ArcticGRO,” says Dr. Zolkos. “It’s unique in that it measures a comprehensive suite of chemical parameters across the Arctic’s largest rivers, uses consistent sampling and analytical methods across the rivers, and sampling occurs at the same times and locations. The consistency of ArcticGRO is increasingly valuable, because it is building a dataset which allows scientists around the world to detect, monitor, and understand northern environmental change in ways that no other scientific program does.”
A few thousand miles south of the Arctic circle, on the marshy coastline of Massachusetts, another long-term ecological research project has entered its third decade as well. The brainchild of Senior Scientist Dr. Linda Deegan, the TIDE project is unique even among long-term studies. Rather than simply monitoring the nutrient flows in the salt marshes of Plum Island Estuary, the TIDE project has been altering nutrients in carefully controlled amounts to understand the long term impacts of human development in coastal ecosystems.
TIDE focuses on nitrogen, an element of most fertilizers and a common pollutant from developed areas in the uplands. Previous studies of nitrogen impacts indicated coastal marsh plants could absorb a lot of nitrogen with no ill effects. But that dynamic was only examined on short time scales, and in small plots of marsh. Whether there were changes that might require many years or many acres to be detected, was unknown.
Thus TIDE was designed to increase nitrogen concentrations in the water to mimic coastal eutrophication across three marshes in the Plum Island estuary and document which effects might cascade through the system. The initial grant was for five years, but Dr. Deegan and her collaborators wanted to keep the project running for at least a decade, if not more, expecting the changes might be slow to reveal themselves.
After years of observations, Dr. Deegan says she remembers the exact moment they discovered a significant change.
“Several of the senior scientists—myself included—came back at the end of a long field day each of them saying, ‘I don’t remember it being this hard to walk through the nutrient enriched marsh when we started this project. Am I just getting older or has something changed?’ And then one of the new students said, ‘I thought that marsh was always like that—well, it’s not like that in the other sites where we haven’t added nitrogen.’”
So they followed the hunch, made some new measurements, and found the structure of the marsh had changed significantly with the added nitrogen. The plants, suddenly awash in a necessary component for growth, no longer needed to dedicate their energy to making roots to seek out nutrients; their root systems were shallower and less dense, thus less capable of holding the marsh together. At the same time, nitrogen-consuming microbes were breaking down organic matter in search of carbon to fuel the chemical processes that allow them to take up nitrogen. This combination made the marsh creek edges more susceptible to erosion by tides and storms.
It took more years than most experiments are run for, but increased susceptibility to erosion steadily altered the shape of stream channels. The ground along the edges of the streams, previously held in place by a deep network of roots, now collapsed underfoot. Chunks of marsh fell off the edges as the roots no longer held the marsh together. As the years went on, fish and other organisms that travel along stream floors to seek out food began to suffer from difficult terrain, resulting in slower growth and fewer fish.
These findings, published in Nature, upended the way people thought about the effects of eutrophication on marshes. “And we never would have known any of that,” says Dr. Deegan. “If we hadn’t done the project at an ecosystem scale and over such a long time.”
Over the decades, the TIDE project not only faced the challenges of running a consistent project for so long, but also of justifying making intentional changes to an otherwise healthy ecosystem. The question lingered: If the goal is to protect ecosystems from human disruption, what do we gain from knowingly tinkering with them?
Humans have already accidentally conducted thousands of ecological change experiments across the globe. Casually inflicted pollution, deforestation, or extinction with no control group, no careful observations, no time limits or safeguards—by scientific standards these are reckless and poorly designed experiments.
In Dr. Deegan’s mind, this makes controlled studies like TIDE even more significant.
“We need to know the true impact of the changes that we are already imposing on the environment. And once we do, we need to be able to halt those changes that threaten the integrity of an ecosystem.” Says Dr. Deegan. “This is a pipe I can easily turn off. Not like when you build a housing development and then you’re stuck with all those houses and their impacts forever.”
Climate change is perhaps the most all-encompassing of these involuntary experiments. As ArcticGRO’s and TIDEs results indicate, ecosystem responses to human disturbance, whether it is climate warming or nutrient over enrichment, are complex. Understanding and adapting to these responses will depend on continued monitoring, observation and experimentation.
In the world of research, rife with limited grants and time-bound fellowships, ArcticGRO and TIDE have been uniquely successful. Research Associate, Hillary Sullivan, who has been part of the TIDE project since 2012, attributes this to the dedication of the researchers, who showed up year after year to get the research done even when funding wasn’t certain or while enduring a global pandemic.
“These large scale projects are a testament to the people that are involved in the effort, and the work that goes in behind the scenes to keep it running,” says Sullivan.
Both ArcticGRO and TIDE plan to continue. ArcticGRO is seeking additional funding to analyze new chemical constituents and continue providing invaluable data for scientists and educators to understand how rivers are responding to a warming climate. “ArcticGRO has improved our understanding of the Arctic, and our work is just getting started,” says Dr. Zolkos. “Continuing will be essential for generating new insights on climate change, northern ecosystems, and societal implications.”
TIDE has now shifted to a new phase of study — observing the legacy of the added nitrogen on marsh recovery in the face of climate change induced sea level rise. Nitrogen additions were halted 6 years ago and researchers hope to gain insights into marsh restoration and ways to improve their resilience to sea level rise.
Thinking in the long-term is not something humans have historically excelled at, Dr. Deegan admits. But the more we try to expand our curiosity past immediate cause and effect, the better we get at understanding nature. If you want to understand an ecosystem, you have to think like an ecosystem—which means longer time scales and larger areas that encompass every aspect of the system.
“Nature tends to take the long view and people tend to take the short,” says Dr. Deegan. “So if you can stick with it for the long view, I think you see things in a very different way.”