The exhibit “In Flux: Perspectives on Arctic Change” sprawls across two floors of one of Cape Cod’s oldest summer-home mansions— Highfield Hall.
When they first walk in, visitors see two of Woodwell Climate Board Member Georgia Nassikas’ encaustic paintings flanking a banner with the name of the exhibit. Woodwell Senior Geospatial Analyst Greg Fiske’s maps light up the entry hall. Sounds from Michaela Grill and Karl Lemiuex’s documentary film cascade down from the staircase to the second floor. Tall windows illuminate Gabrielle Russomagno’s small, detailed photographs of the Arctic’s durable vegetation and Aaron Dysart’s reflective sculpture, which invites us to tread with caution.
These six artists’ works have been on display in Highfield Hall since May 21st, and will remain as part of the “In Flux” exhibit until July 14th. On July 11th, some of the artists will participate in a panel discussion with their Woodwell scientist collaborators, Dr. Jennifer Watts and Dr. Sue Natali.
The exhibit’s goal is to connect a distant community to the reality of Arctic change. Many of us may never have the opportunity to visit the Arctic, or study it like Woodwell Climate researchers do. Art can help communicate the reality of an unfamiliar place.
Woodwell Climate’s Arctic research informed every piece of art on display at Highfield Hall. Each artist has had the chance to travel to the Arctic alongside Woodwell researchers Dr. Jenny Watts and Dr. Sue Natali. According to Watts, traveling with an artist brought a new perspective to a landscape she had visited so many times before.
“They are looking through the lens of the artist,” Watts says, “They’re kind of seeing it through this fresh look, and then we’re able to see it through their eyes.”
Russomagno calls herself a “student of the Arctic.” Like some of the other artists, she had never been so far north before her 5-day trip with Watts to Alaska. She recalled the whirlwind experience of creating while acclimating to her new surroundings.
“I was able to be making art while discovering,” Russomagno says, “I was looking at the same material [as Watts] and understanding it completely differently.”
The exhibit assumes visitors might come in with certain assumptions about the Arctic, but hopes they will soon throw their preconceived ideas out of Highfield Hall’s many windows. One of these false ideas, Watts says, is that the Arctic is a barren wasteland.
“In the summer especially, it’s brimming with life, and we wanted to show that part of the story because it’s often overlooked,” she says.
Bursts of life from the summer tundra— small shrubs, mosses, lichens, and grasses— are featured in Russomagno’s series of photographs in “The Quiet & the Mighty.” Nassikas’ encaustic paintings uniquely depict color, horizon, and change. Fiske’s maps teleport us from Highfield Hall to the tundra. The entire “In Flux” exhibit displays unexpected dimension.
The experience of the art at Highfield places the viewer in the atmosphere of the Arctic tundra. A quiet place with unexpected vibrancy, the uptick in frequency of deafening crashes as ice melts, breaks, and shifts. These elements would be much harder to glean from traditional methods of communication in the science world. A graph, for example, would likely not evoke such a strong emotional response.
“I think Woodwell and other science organizations struggle with conveying their data, and hard facts, and things they’re discovering to a general audience,” Nassikas says, “Art is another way to change the world for the better.”
Dysart echoed this message: “If research does not connect with people and culture, nothing’s going to change. Art can make that connection. Art has strength that words don’t.”
Part of the power of this exhibit is its setting. We have the opportunity to experience the Arctic’s dynamic changes outside of its natural barriers, and Highfield Hall is the tether.
Dysart says it is “A call back to [our] normal life as opposed to the gallery aesthetic.”
Highfield is a home. It may not feel familiar to everyone, with its extravagant furnishings, stained glass windows, chandeliers, and many rooms, but it was built by humans, for humans. The house has withstood the test of time, though it has changed greatly since its construction in 1878. The Arctic, too is a home for many people, animals, and plants— one that is threatened by climate change. The exhibit at Highfield Hall brings the changing Arctic home to our own changing landscape.
Retrogressive thaw slumps (RTS) are extreme permafrost thaw landscape features, which occur when a section of ice-rich permafrost becomes warm enough to cause the ground ice to melt and soils to collapse. Once they start, RTS continue to expand and destroy nearby permafrost for months to years. Many RTS have been identified, but because they are often in extremely remote arctic locations, very little is known about the potentially substantial carbon emissions from RTS in the form of carbon dioxide and methane. This study will provide the first continuous measurements of carbon emissions from a RTS, collected over at least a year via an eddy covariance tower. The research is also supported by an equipment loan provided through the U.S. Department of Energy AmeriFlux Rapid Response program, which recognized this project as a valuable opportunity to advance science. The data collected will also serve as a “proof of concept” for a subsequent $1.3M proposal to the National Science Foundation for continued research at the site.
Freshwater ecosystems are significant sources of the greenhouse gases that persist in the atmosphere and contribute to warming. However, research is lacking an understanding of how disturbances like wildfire and agriculture can change these emissions. This project will address these information gaps by collecting measurements of carbon emissions from ponds, using autonomous floating chambers developed with funding from a previous FCS grant. With this new high-resolution data, the team will unlock the ability to predict year-round greenhouse gas emissions from ponds in the Arctic and the Amazon. Floating chambers will be deployed in ponds in Alaska affected by wildfires, and in agricultural reservoirs in the Amazon-Cerrado frontier. In both locations, the ability to take more frequent measurements of carbon emissions will help researchers improve models and better assess the ponds’ impacts on regional carbon budgets.
Established in 2008, the Polaris Project has earned global recognition for its leadership in Arctic research, education, and outreach. Through the commitment to providing students with hands-on experience, Polaris has enabled numerous publications and presentations. Polaris is approaching a critical juncture in the next funding cycle, and this project will complete the first-ever comprehensive synthesis of Polaris Project research to help sustain Woodwell Climate’s sole undergraduate research program. By consolidating past research and educational achievements, the team will create a data synthesis paper to be submitted to a peer-reviewed, open-access scientific research journal, as well as a retrospective analysis of undergraduates’ research experiences with Polaris to be submitted to an education research journal. The team will also launch an online communications piece that documents past Polaris participants’ field experiences and unique journeys with a variety of narrative and artistic communications styles and elements.
Coastal rivers, like those that flow into Massachusetts’ Buzzards Bay and Vineyard Sound, are fragile environments that serve critical ecological functions for native fish, downstream estuaries, and coastal wetlands. Different rivers are uniquely sensitive to changes in air temperature based on a variety of characteristics, such as their water source or shade. However, land use changes, including housing development and cranberry bogs, have affected key river characteristics and stream temperatures. This project will investigate MA coastal rivers’ sensitivity to changing air temperature, as well as how that sensitivity is affected by both connection to groundwater and the creation or restoration of cranberry bogs. The temperature sensors and geochemical analyses used in this research may be scalable beyond these rivers and yield insights to inform research approaches relevant to rivers around the world.
Seasonal weather forecasts hold immense potential to improve risk management from agricultural failure, water stress, and extreme events. However, significant advances in technical forecasting capabilities remain largely unavailable to communities without the resources to develop or customize them for their region. In 2023, Woodwell Climate Just Access co-produced a national climate risk assessment with the Democratic Republic of Congo’s Ministry of Environment and Sustainable Development. That report identified drought as a major climate threat to the DRC—one which stands to affect almost the entire country. In response, this project will develop a seasonal drought forecasting model tailored to the DRC using cutting-edge machine-learning methods. The forecast will be able to deliver precise rainfall anomaly predictions up to six months in advance for the whole country, and serve as an early warning system to help local people and decision-makers anticipate the impacts of escalating drought risk.
Learn more about the Fund for Climate Solutions.
A map of Alaska created by Senior Geospatial Analyst Greg Fiske garnered two awards—the International Cartographic Association and International Map Industry Association Recognition of Excellence in Cartography, and Cartography Special Interest Group Excellence—at the Esri User Conference in San Diego this week.
Esri is the industry leader in mapping software and the Esri User Conference brought together more than 20,000 geospatial professionals including cartographers, software developers, students, end users, and policymakers. Woodwell Climate has an ongoing partnership with Esri and has attended the conference for more than two decades.
“These awards mean a great deal as the recognition comes from two very highly acknowledged cartographic organizations and the map pool at the Esri User Conference was immense,” Fiske said. “In the case of this map, not only did I share a basemap that we’re using widely in our Permafrost Pathways project, but I also shared a high-level overview of how I created the map and the resources (in the format of data, software, tutorials, and people) needed to do the same anywhere on the planet.”
The map that won the awards shows the topography of Alaska. To the average viewer, it is beautiful, informative, and not overly complicated. But Fiske also created a storymap that breaks down the data layers, and analytical and design steps required to create the map—and it is anything but simple.
Fiske has been creating maps at Woodwell Climate for more than 20 years, and is known among colleagues—at the Center and across the mapping community—for his analytical skill, creativity and artistry, and dedication to quality.
“People are drawn to a beautiful map,” Fiske said. “Putting our work on a map takes advantage of that scenario and gives us an opportunity to spotlight our research.”
Located in Eastern Alaska, the Yukon Flats National Wildlife Refuge is larger than many U.S. states. It’s a roadless landscape of rocky mountain outcroppings, flat meadows, treeless tundra, and dense spruce forests, bisected by the Yukon River and dotted with thousands of lakes and wetlands. Several Alaska Native communities call the refuge home and subsist off of its natural resources. This diverse, expansive wilderness is well adapted to fire, and it’s not uncommon to see pink fireweed blooms or young grass and seedlings sprouting from burn scars.
But the relationship between fire and land here—as in many places—has been changing as the climate warms. Yukon Flats sits atop ancient, ice-rich ground, called Yedoma permafrost, formed during the last ice age. Thawing Yedoma is a significant source of carbon dioxide and methane emissions to the atmosphere. Fire, made more intense and frequent by climate change, threatens to accelerate that thaw. In an effort to preserve carbon stores, the U.S. Fish and Wildlife Service recently dedicated 1.6 million acres of the Yukon Flats refuge to piloting a new firefighting regime, one designed to protect carbon, in addition to human lives and property.
This decision was, in part, influenced by research led by Dr. Carly Phillips, during her time as a research scientist at the Union of Concerned Scientists, alongside Woodwell Climate Senior Science Policy Advisor, Dr. Peter Frumhoff, and Associate Scientist, Dr. Brendan Rogers. In a 2022 paper in Science Advances, the group quantified the threat boreal forest fires pose to climate goals. Wildfires in boreal North America alone could, by mid-century, use up 3% of remaining global carbon dioxide emissions associated with keeping temperatures below the Paris Agreement’s 1.5°C limit. This is a conservative estimate—the authors suggest the true numbers could be even larger as the accelerating effect of fires on permafrost thaw, and the release of other greenhouse gasses, were not included in the analysis.
The study also examined the cost-effectiveness of combatting those fires as a potential climate solution. Molly Elder, an economics and public policy Ph.D. candidate at Tufts, performed an analysis of data from across Alaska’s fire management zones and found that actively suppressing boreal fires could cost less than 13 dollars per ton of carbon dioxide emissions avoided—putting it on par with other carbon mitigation solutions like onshore wind or utility-scale solar.
“The work we did in this project proved and quantified what the management community already knew, which is that management is effective at reducing burned area when fires are actively suppressed,” says Elder.
Combating boreal fires could provide much needed mitigation, and at a low cost, but there are some logistical obstacles between the hypothetical model and actual implementation. Typically, in Alaska, boreal forest fires are left to burn unless they present a risk to human life or property. This is partly because these forests are fire-adapted, but also partly due to the sheer vastness of boreal wilderness. With limited resources, it is not always practical or possible to track down and put out a fire, especially in a place without roads like Yukon Flats. Firefighters are already stretched thin with lengthening and increasingly high-intensity fire seasons.
So the research group worked with the fire management community in Alaska, facilitated by the Alaska Fire Science Consortium, to better understand the needs of firefighters and demonstrate the co-benefits of fire suppression in addition to preserving carbon.
“Many of the fire managers expressed how stretched their resources already were and resistance to the idea that yet another mandate would be added to their plate,” says Dr. Phillips. “However, after discussing the implications of our research, and the ambition that additional funding would come with any mandate, we got more buy-in.”
The other concern managers raised was whether fire suppression would ultimately be successful in achieving their goals. Historically, fire suppression efforts in the US have been counterproductive to protecting forests.
In the late 1800s, lack of understanding of the ways Indigenous communities in Western states have used fire to maintain healthy forests resulted in decades of near-total suppression of fire in the region. In many western US forests, (adapted to what Dr. Rogers calls “high-frequency, low-intensity” fire) suppression allowed highly flammable, dry vegetation—which would normally be periodically burned away—to build up. When fires did spark, they were then capable of growing to a size and intensity that could damage, rather than activate, the forest.
But in boreal Alaska and Canada, it’s just the opposite. The spruce-dominated forests are adapted to high-intensity fires that only return every hundred or so years. As climate change speeds up the return of fires with hotter and drier conditions, boreal forests have begun to suffer major losses.
“The frequency of boreal fires, ultimately, is increasing. In many places we’re seeing more reburning and larger burned areas,” says Dr. Rogers. “Climate change and human actions are shifting that fire regime out of its historical range into this new realm. So the whole idea of fire suppression in the boreal is to keep fires closer to historical levels, to which the systems and fauna are adapted. Suppression can help delay permafrost degradation, limiting carbon emissions and buying us time to reach our climate targets.”
Past missteps with fire suppression have made fire managers cautious, though. Lisa Saperstein, Regional Fire Ecologist with U.S. Fish and Wildlife, notes that, with limited resources, priorities in intense fire seasons will have to shift to protecting human settlements over carbon and permafrost. But, given the co-benefits of keeping fire activity to historic levels—and the urgency of reigning in emissions in any way we can—managers in Yukon Flats were willing to try.
“This type of shift in values is always difficult, especially when the outcome is uncertain. Support from leaders of fire management organizations, in addition to land managers, has been a key factor in this effort moving forward,” says Saperstein.
This change in tactics won’t mean that every fire that ignites will be put out—both impractical and unhelpful from an ecological perspective—but it will mean more aggressively targeting fires when they arise. Since the 1980s, when fire was detected in Yukon Flats, it would be monitored by the Alaska Fire Service, but not suppressed, except when presenting a threat to human communities.
“This pilot project is a new twist to a long-standing partnership between the U.S. Fish and Wildlife Service and Alaska Fire Service. For select areas of the Refuge, now if a fire start is detected, we ask the Alaska Fire Service to only send a crew if they are confident in 100% containment within three days,” says Yukon Flats Refuge Manager, Jimmy Fox.
The suppression teams will target fires that they judge as “quick fixes”, curbing the potential for them to grow into large, stand-replacing sized blazes. If a fire becomes too big to fight quickly, the teams revert to the old tactic of simply monitoring.
“If a crew is deployed, we ask that they cease suppression and return to base after three days, regardless of containment status,” says Fox. “This request is grounded in concern for the Alaska Fire Service having resources available if communities become threatened from other fires.”
Fox says refuge management and Alaska Fire Service members will stay flexible as the pilot project unfolds so they can respond to changing conditions.
“In conservation, we tend to focus on the technical aspects of a challenge and avoid the difficulties that come with asking ourselves to adapt,” says Fox. “This pilot project is both adaptive and technical. It has required me to stay curious and listen. It has required me to learn new information, and share it in a way that is comprehensible. It’s required being comfortable with uncertainty, and yet standing in purpose. It has been a learning journey so far, and will continue to be.”
On the research side, the team at Woodwell Climate hopes this new strategy will present an opportunity to study the practical implementation of fire suppression as a climate solution.
“This is the proof of concept,” says Dr. Frumhoff. “This is the opportunity to really see in a rigorous way whether we can apply this solution at a meaningful scale and gain meaningful carbon benefits with relatively modest cost. And it’s directly traceable to the conversations that the research team had with fire managers.”
The 1.6 million acres slated for fire suppression are small compared to the 8.6 million that comprise the entire refuge, or the 5.6 billion acres of permafrost in the northern hemisphere, but it’s a very important start. Research and analysis of the effectiveness of this solution could aid its expansion to other regions of the Arctic.
“It’s a big moment, because, while it’s obviously a relatively small area compared to all of Alaska, 1.6 million acres is still a lot of land,” says Dr. Rogers. “We’re hoping that it’s a jumping off point and can translate to other refuges and other agencies with the addition of proper funding and staffing.”
And each summer, the case for protecting permafrost and boreal carbon, while working to dramatically reduce emissions from fossil fuels, continues to grow.
“Every year that goes by, as fires intensify and climate change gets worse, this message might resonate just a little more, ” says Dr. Rogers. “Because it’s a problem that’s not going away if we do nothing about it. And we can do something about it.”
Polaris Project alumni and early career scientists, Aquanette Sanders and Edauri Navarro-Peréz were awarded the 2022 John Schade Memorial scholarship. The fund, established to honor Dr. Schade’s unwavering dedication to mentoring young scientists, recognizes two students per year who are pursuing higher education and reflect Dr. Schade’s values of mentoring, education, leadership, equity in the sciences, and advancing Arctic and environmental science to mitigate climate change.
“The purpose of the fund is to support the next generation of scientists who are making a lifelong career and personal commitment to activities that reflect and demonstrate Dr. Schade’s values,” said Dr. Nigel Golden, a postdoctoral researcher at Woodwell and coordinator of the fund. “We were profoundly impressed with this round of applications. All of the applicants for the scholarship were exceptional early-career scientists who are doing timely and important research, and whose career trajectories have been impacted by their mentorship through Dr. Schade, or through their mentors who worked with him. For Aqua and Edauri, what really helped to set them apart was a demonstrable commitment to creating spaces to ensure the success of scientists from a diversity of backgrounds.”
Aquanette Sanders is a Masters student at the University of Texas, Austin, pursuing a degree in Marine Science. However, as a Polaris participant, Sanders’ research focused on the soil. She studied greenhouse gas fluxes from thermokarst features— depressions and bumps in the tundra landscape formed by permafrost thaw. Sanders studied how emissions of carbon dioxide, methane, and nitrous oxide differed between these features and undisturbed areas of tundra.
Sanders’ career so far has taken her from an undergraduate research program with Maryland Sea Grant, to a SEA Education cruise to the Sargasso sea, to the Simpson Lagoon on Alaska’s North Slope, where she is currently researching groundwater nutrient flows as they change with thawing permafrost. For Sanders, the experience with Polaris affirmed her interest in climate change and Arctic science.
“The Polaris Project was my gateway into Arctic science,” says Sanders. “Seeing the effects of permafrost thaw first-hand, with the large amount of thermokarst features in the Yukon-Kuskokwim Delta, confirmed that my research interest in greenhouse gasses and nutrient cycles— a topic that still has so many rising questions that need to be answered.”
Sanders says she is always looking for her next step forward in research. She plans to pursue a dual doctorate in veterinary medicine and research after completing her masters degree. She wants to combine her background in chemistry and biology to understand how changes in nutrients will affect aquatic animals at the top of the food web.
“My research is motivated purely by the eagerness to learn more. As I find new results, I ask more questions that eventually lead to more experiments or hypotheses. This keeps me excited and ready for present and future research,” says Sanders.
Edauri Navarro-Pérez is Ph.D. candidate at Arizona State University, with a background in soil, root ecology, and drylands restoration. As a Polaris student, Navarro-Pérez investigated whether there were differences between emissions coming from burned and unburned areas of the tundra. Her work contributed to a body of research examining how fires are affecting chemical processes in tundra soils— specifically respiration, which emits carbon and nitrogen. For her, Polaris was an opportunity to gain experience with field methods.
“Polaris contributed a lot to my knowledge in terms of how soil science is done in the field, as well as the process of the scientific method— from developing my own question to seeing the results of my work,” Navarro-Pérez said.
From Polaris, to working as an undergraduate lab technician, to conducting research in Belize and Costa Rica, Navarro-Pérez is led by her curiosity. She is especially interested in the way soil connects to our daily lives, and how understanding the interactions between plant roots and the soil in which they’re growing can lead to a deeper understanding of climate change.
“Understanding how restoration projects can affect plant development and how plants can affect soils in the longer run, through decomposition and soil respiration, can be pertinent to environmental planning for climatic issues,” said Navarro-Pérez.
Navarro-Pérez said she feels grateful that an environmental scholarship supporting Latina and Latino students enabled her to earn her undergraduate degree. She now hopes that her future career will involve research, mentoring, and teaching, as well as exploring her research topics through art and literature which provides a different frame for examining the world around us.
Both recipients will receive funding to continue their education and pursuit of science, mentorship, and equity, encouraging a new generation of Arctic scientists working to change the world.
A recent paper, published in Science Advances, has found that fires in North American boreal forests have the potential to send 3 percent of the remaining carbon budget up in smoke. The study, led by Dr. Carly Phillips, a fellow with the Union of Concerned Scientists (UCS), in collaboration with the Woodwell Climate Research Center, Tufts University, the University of California in Los Angeles, and Hamilton College, found that burned area in U.S. and Canadian boreal forests is expected to increase as much as 169 and 150 percent respectively—releasing the equivalent annual emissions of 2.6 billion cars unless fires can be managed. The study found proper fire management offers a cost-effective option, sometimes cheaper than existing options, for carbon mitigation.
Boreal forests are incredibly carbon rich. They contain roughly two-thirds of global forest carbon and provide insulation that keeps permafrost soils cool. Burned areas are more susceptible to permafrost thaw which could in turn release even more carbon into the atmosphere. Although fires are a natural part of the boreal ecosystem, climate change is increasing the frequency and intensity of them, which threatens to overwhelm the forest’s natural adaptations.
Despite the value of boreal forests for carbon mitigation, the U.S. and Canada spend limited amounts of funding on fire suppression, usually prioritizing fire management only where people and property are at risk. Alaska accounts for one fifth of all burned area in the U.S. annually, but it receives only 4 percent of federal funding for fire management. Limiting fire size and burned area through proper management can be effective at reducing emissions.
To prevent worsening emissions, fire management practices will have to be adjusted to not only protect people and property, but also to address climate change. Fire suppression in boreal forests is an incredibly cost-effective way to reduce emissions. The study found that the average cost of avoiding one ton of carbon emissions from fire was about $12. In Alaska, that means investing an average of just $696 million per year over the next decade to keep the state’s wildfire emissions at historic levels.
Increasing wildfires also pose an outsized threat to Alaska Native and First Nations communities, who may become increasingly isolated, and may lack the resources to evacuate quickly if wildfire encroaches on their lands. Many Alaska Native people already play a crucial role in existing wildfire crews, and investing in more fire suppression could create additional job opportunities for Indigenous communities.
The Polaris Project began in 2008 as a way to shepherd a new generation of Arctic and climate scientists into their careers. Each summer, Woodwell has selected a cohort of capable and motivated students, bringing them on a two-week field excursion guided by leaders in the field of Arctic science. Students explore the landscape, design a research project, and collect data, before returning to the Center to analyze their results.
In the United States, Women make up only 28% of the STEM workforce—a trend that is reinforced by lack of support for women and girls to explore a career in science. Polaris aims to combat this. For the women of Polaris, the experience has provided valuable mentorship, built confidence in their skills, and sparked their motivation to forge ahead into their future as scientists. Alumnae of the Polaris Project have gone on to pursue doctorate degrees in climate research, influence climate policy, and some have even returned home to the Center. Here, we meet just a few of the impressive women of Polaris.
Dr. Claire Griffin was part of the very first Polaris expedition. In the early days of the program, the field site was located in the far northern region of Kolyma, Russia. She sampled lakes and used remote sensing to map organic matter in the Kolyma River and its major tributaries. Her research grew into a published paper co-authored with Clark University Professor of Geography, Dr. Karen Frey, and Woodwell’s Acting President and Executive Director, Dr. Max Holmes.
Dr. Griffin’s experiences in the Polaris Program have guided her throughout her career. She recalls one afternoon walking back from the homemade lab where students were analyzing their samples, talking with one of the expedition’s leaders, Dr. John Schade.
“I was saying that I found pipetting to be pretty meditative in some ways,” Dr. Griffin says. “You get into a rhythm and the lab work can be kind of soothing. And he said that one of the things in science is that no matter what you’re doing, there is going to be something that is kind of boring, so find the tedium that you like and be able to do that.”
Dr. Griffin says she thought a lot about this when she was making decisions about where to go next. Considering two graduate programs, Dr. Griffin chose the direction of lab chemistry because she couldn’t see herself enjoying the tedium of counting tree rings. She has been working on aquatic chemistry ever since, studying how terrestrial material moves from land into aquatic systems— specifically carbon and nitrogen.
“I would not be doing what I’m doing today if I had not gone through Polaris. The most effective way to learn science is to actually do it, and the learning-by-doing model that Polaris espouses is something that definitely had an effect on me.”
Dr. Griffin wants to share that model with students of her own. She is currently looking for faculty positions at teaching-focused colleges.
“I enjoy teaching and talking about science,” Dr. Griffin says. “If we are going to enact climate change policies for the better, then we need to be able to reach students who are not going into the environmental sciences.”
Throughout her career, Dr. Blaize Denfeld has made her decisions based on spark.
“I feel like every step of the way, something I’ve done has sparked something in me that I realize, ‘maybe this is the next step that I want to pursue.’ So it’s been an interesting journey starting with the Polaris project to today,” says Dr. Denfeld.
After completing the Polaris Project and her undergraduate studies, she applied for a Ph.D. program in Sweden, thinking “I was in Siberia for a month and a half, I can live in a foreign country for a few years.” It was there she felt a spark for the aspects of science that involved collaboration and coordination, so she accepted her next position at NASA’s Earth science division. After NASA, she felt the spark for combining science and policy and moved on to the US Global Change Research Program, and finally, her current position as Deputy Director of the Swedish Infrastructure for Ecosystem Science (SITES). SITES runs nine ecological research stations across Sweden that monitor the Arctic and Boreal environment. Some of the stations contain ice records that extend back to the 1940s, which Dr. Denfeld says provide a powerful image of just how much the climate is changing.
In her current role, Dr. Denfeld coordinates scientific collaborations across all SITES’s research stations. For Dr. Denfeld, the best part of her position, and of all the jobs she’s held, has been her fellow scientists.
“I think for me it always comes back to the people and the collaborations. Of all the positions I’ve had, the thing I enjoy the most is getting to work with passionate people that are really intelligent and have really good ideas,” says Dr. Denfeld.
Dr. Denfeld says that, whatever direction her career takes next, she hopes to be a model for other women in STEM.
“As my career has progressed, I’ve benefited from really strong women in science, and so I feel a stronger passion now for paying it back for all the female scientists that helped me get to where I am now.”
Emily Sturdivant joined the 2011 Polaris expedition to Siberia with an interest in GIS and an open mind about where the experience might lead. Her project involved collecting data on carbon fluxes with a homemade flux chamber that she would later use to ground truth satellite data observations.
“I would go out to a patch of water, anything from a tiny stream to a lake, tip my bucket upside down onto the water and track the change in gas concentration inside the bucket as I measured wind speed and other variables in the surroundings,” Sturdivant says.
Sturdivant recalls the days of field work alternating between chaos and tranquility.
“One of my favorite memories is of when another participant and I headed out to collect samples at a lake across the river from the barge where we were bunked. They dropped us off with an inflatable boat that, along with my bucket and other equipment, we hauled through the bushes and pumped up with one foot or the other sinking through the vegetation,” Sturdivant says. “After the chaos of setting up, drifting on the lake as we collected our measurements in the midst of the wilderness was so peaceful.”
Though Sturdivant didn’t carry on with Arctic research after graduating from Clark University, she still carries what she learned from the experience into her work as a Research Assistant and Geospatial Analyst Consultant at Woodwell where she works on forest carbon analyses.
“That experience became an invaluable reference as I continued in science and remote sensing. Now as I work with pixel values and ground data collected by others, I understand the work and complexity involved in collecting those data,” says Sturdivant.
As she grows in her career, Sturdivant says she is looking forward to being a positive influence on all her fellow colleagues.
“I want to keep being involved in the institution and mentorship,” Sturdivant says. “As Polaris did for me, I want to help others find moments of inspiration and guidance.”
The universe seemed to conspire around Darcy Peter to bring her to the Polaris Project. The application was forwarded to her by professors and friends alike and she soon found herself on the 2017 expedition examining greenhouse gas emissions from water bodies in Alaska’s Yukon-Kuskokwim Delta.
Peter is an Koyukon & Gwich’in Athabascan from the village of Beaver, Alaska and during that summer, she noticed the Polaris Project did not have much interaction with the Indigenous communities nearby. She brought this feedback to Woodwell Arctic Program Director Dr. Sue Natali.
“I said if Polaris is going to continue for years, we need to have a relationship with the people, and if we are going to train the next generation of Arctic scientists, we should be making sure the research questions we are forming are impacting Alaska Natives in a positive way,” says Peter.
Peter returned as a student mentor in 2018 and worked with Dr. Natali to implement changes to the program that would build stronger relationships with locals in the community of Bethel where Polaris participants stay before heading out to the field site.
Peter organized a meeting where scientists and students could listen to the concerns of community members and apply them to students’ projects. Peter also went on the local radio station to promote the meeting and spearheaded the creation of a newsletter about the project that was translated into Yupik, the traditional language spoken in the region. She volunteered her time in 2019 to lead the community meeting in Bethel again, and joined Woodwell full-time as a Research Assistant in 2020.
“The first community meeting in Bethel was very impactful—seeing seasoned, more experienced scientists have questions for the community… I think it really painted the picture for a lot of the scientists traveling with us that year of the power their research has to truly help people,” Peter says.
Peter is now the face of Woodwell in Alaska, working from Fairbanks surrounded by friends and family to continue building bridges between Woodwell and Alaska Native communities and non-profits, as well as facilitating the Center’s ongoing Arctic fieldwork. She says she intends to dedicate her career to ensuring science is conducted ethically, in a way that benefits people.
“All research has the power to affect change,” Peter says. “What good is research if it only benefits other researchers? I want to keep serving Alaska Native communities and amplifying the voices of my people and my relations, whose voices have been put down their entire lives.”
Dr. Bianca Rodríguez-Cardona was an experienced Arctic researcher by the time she joined Polaris in 2017. She had been conducting her Ph.D. research on how fires influence stream chemistry in Russia’s Central Siberian Plateau when she heard about the program from Dr. John Schade, one of Polaris’s founding faculty members, at an AGU meeting, and he convinced her to apply.
Dr. Rodríguez-Cardona was confident in her field skills when she arrived in Alaska that summer. But the tundra of the Yukon-Kuskokwim Delta was different from the boreal forests of her field site in Siberia. Flowing water was much harder to find and she spent days hiking in search of a stream to take her measurements. When she did eventually find one, adding the carefully measured mix of salts she uses to track how nutrients flow through the water, they slipped by so fast she couldn’t jog downstream quickly enough to take a second measurement.
“I was sitting in mud up to my elbows and just thinking ‘this can’t be happening.’ I totally freaked out,” Dr. Rodríguez-Cardona says.
But she had been hiking that day with Dr. Schade, who helped her calm down, reassess the situation, and figure out how to get a second measurement with the supplies she had left. She looks back on that moment as a lesson in inner strength.
“We limit ourselves in whatever we think we can do until we’re there and we have to do it. It’s either now or nothing.” Dr. Rodríguez-Cardona says. “The Polaris Project helped to show me that I’m a lot more capable, stronger, and resilient than I think I am.”
Dr. Rodríguez-Cardona returned to Alaska as a mentor in 2019 and went on to a postdoctoral position at the University of Québec at Montréal. She hopes to find a permanent position after her postdoc that keeps her working and learning in the Arctic.
“I never imagined I’d be an Arctic scientist, but I’ve spent four summers now in the Arctic and Boreal regions. So, there is something to be said about chances and serendipity.”
For Natalie Baillargeon, 2018 was full of new experiences— it was her first year in Polaris, her first summer research experience, her second ever plane ride, and her first time going camping. But it was not her last. Polaris sparked her passion for ecological research.he returned again in 2019, but to a very different Arctic.
Record-breaking heat, rolling thunder, and dry lightning storms—in Bethel, the heat literally shattered the thermometer.
“There were days where Polaris leaders had to call days short due to fieldwork being dangerous,” Baillargeon says. “To be doing fieldwork in the Arctic and have to worry about heatstroke is not normal. It was sad and depressing.”
Baillargeon returned back to her college studies, determined to carry the research she began with Polaris through to its conclusion. She was examining the short- and long-term impacts of wildfires on vegetation. After four long years, through transferring colleges and moving her lab twice in the middle of the pandemic, Baillargeon recently submitted her paper for publication; her results show sustained impacts of wildfire on the ecosystem.
She began working at Woodwell Climate, as External Affairs Coordinator—before she graduated—and joined full time in June of 2021. According to Baillargeon, seeing the smoke of wildfires clouding the camp, and feeling the unusual heat of 2019 clarified her desire to affect change through policy as well as science.
“I actually think that 2019 Polaris was another pivotal experience for me because it reinforced my desire to work more on climate policy. I want to help make change instead of documenting the destruction of ecosystems.”
Ellen Bradley’s drive to study climate science comes from her Indigenous background. She is Tlingit and was searching for research opportunities close to her homelands when she found Polaris. During the summer of 2019, she marveled at the heat and smoke of a record-breaking season, listened to the concerns of the local communities in Bethel, and played the informal role of an Indigenous educator among her fellow students. Her experience solidified her desire to not only conduct research but to add an Indigenous voice to it.
“My passion about all of this, climate research, climate communication, science communication, comes from my being Tlingit, from my Indigenous background, from my connection to the land, and knowing that the actions that have caused us to be where we are have come from colonization,” Bradley says. “If we are going to solve something like climate change, we are going to need the assistance of the Indigenous people who have lived in these places for, in many cases, over 20,000 years.”
Bradley based her project on the concerns she was hearing from community members around fishing, and used phytoplankton as a proxy for the health of aquatic ecosystems. She intended to return to carry on this research in 2020, but the pandemic postponed expedition plans. Instead, Bradley graduated from Gonzaga into a world altered by COVID-19
Searching for her next step, she got involved in the winter sports community and began skiing for outdoor advocacy groups. She is an athlete for NativesOutdoors, Protect our Winters, and Deuter, as well as a ski ambassador for Crystal Mountain, Washington.
“I know I want to keep skiing as part of my career, using skiing to tell stories about Indigenous people’s joy on the landscape and why outdoor recreation is important for our fight against climate change,” Bradley says.
She began work at Woodwell as a research assistant for the Arctic program in 2021 and she will return to Alaska in 2022 with the other 2020 Polaris students. When she looks towards the future of her career, Bradley says she wants to use the opportunities she’s had to represent Traditional Ecological Knowledge in the climate space.
“I’ve had a lot of privilege to go to school and I’m also really nerdy about science, so it just feels like the best way for me to use the tools I have,” Bradley says. “Incorporating my values into science is helpful to more than just myself and my passions. It’s a voice that has to be out there, or it won’t exist.”
Alma Hernandez was accepted into the Polaris Project just before the world closed down due to COVID-19. In the uncertainty following lockdowns and rising cases, it became clear that the 2020 cohort wouldn’t be able to travel to the Arctic. Polaris, like everything that year, went virtual.
Though the field components of Polaris were postponed, Hernandez was still able to join Zoom meetings with other students and project mentors. She found the meetings just as meaningful, talking with others whose passions and backgrounds differed from her own, but converged around climate and the environment. Her interests lay in the unique Arctic soil that holds a wealth of information about our Earth’s changing climate.
“The composition of Arctic soils is really unique. They are extremely affected by global warming and have long-term implications as they release more greenhouse gasses that contribute to climate change,” says Hernandez.
Since the completion of the program, Hernandez graduated from University of Texas, El Paso, and has been accepted to a Master’s program at the University of New Hampshire. She was also the recipient of the NSF’s Graduate Research Fellowship award and Woodwell’s own inaugural John Schade Memorial Fund award. Hernandez says she feels indebted to the mentorship she has received from Polaris.
“There were many instances when I felt overwhelmed by the thought of not having the qualifications to apply for graduate school or fellowships. I almost gave up, but Sue [Natali] and the Polaris Alumni were all so encouraging. My success in these applications wouldn’t have been possible without their support,” says Hernandez.
Members of the 2020 cohort will be completing their field experience this summer. Hernandez is looking forward to her long-awaited trip to Alaska, excited to finally see the Arctic soils she has been studying so diligently. After that, she plans to complete her master’s degree and, perhaps after a well-earned break from school, earn a Ph.D.
“I want to be able to contribute at least a little portion of knowledge to serve people in the future. My dream was always to be a researcher, and I plan to keep pursuing this goal.”