Forests are critically important for slowing climate change. They remove huge quantities of carbon dioxide from the atmosphere – 30% of all fossil fuel emissions annually – and store carbon in trees and soils. Old and mature forests are especially important: They handle droughts, storms and wildfires better than young trees, and they store more carbon.
In a 2022 executive order, President Joe Biden called for conserving mature and old-growth forests on federal lands. Recently Biden protected nearly half of the Tongass National Forest in Alaska from road-building and logging.
Read more on The Conversation.
A new effort to understand how land management across the Vineyard can help fight climate change is hoped to serve as a model for other communities looking for ways to battle global warming.
The Woodwell Climate Research Center in Woods Hole has embarked on a study with the Martha’s Vineyard Commission and Sheriff’s Meadow to figure out how much carbon the Island’s natural landscape can hold. In doing so, the groups hope to uncover opportunities to store more carbon through nature and prevent it from being released into the atmosphere — a strategy that could be translated to mainland towns looking to do their bit.
Read more on The Vineyard Gazette.
Nitrous oxide (N2O) is a prevalent, powerful—and understudied—greenhouse gas. Soils are the largest contributors of N2O emissions, but understanding of N2O fluxes is limited by lack of real-time monitoring technology. Given our broad geographic coverage and long history of innovation in measuring greenhouse gases, Woodwell Climate is well-positioned to address this gap. This award will support the purchase of cutting-edge field equipment for instantaneous N2O measurements, as well as the development of a laboratory system for measuring multiple greenhouse gases in soil experiments. Together, these will enable advances in understanding how changing soil conditions around the globe—from permafrost thaw to wetland restoration, rangeland management to tropical deforestation—affect the balance of nitrous oxide.
Trees accumulate carbon as they grow, making them critical climate assets. However, many forests are also commercial sources of timber and wood fiber. Forest harvesting is generally assumed to result in a net release of carbon, even after accounting for the carbon stored in wood products. As the search for practical climate solutions intensifies, a central question is whether this either-or thinking could be reframed as yes-and. In other words, whether commercial forests could be managed to meet multiple goals—providing wood and paper products, creating economic returns from natural resources, and sequestering carbon? The proposed work builds on our longstanding research at the Howland Research Forest, addressing whether shelterwood harvesting can be both an economically viable harvest practice and a natural climate solution.
Cover crops have the potential to enhance carbon uptake and stability in agricultural soils and, under the Inflation Reduction Act, the USDA is poised to invest billions of dollars in adoption of cover crops as a climate-smart practice. However, current understanding of the effectiveness of cover cropping to deliver climate benefits is lacking a key consideration—microbial processes. Soil microbial communities are key regulators of soil carbon dynamics, and may determine whether a given land management practice results in net loss or gain of carbon. This work will characterize microbial processes and their role in soil carbon stabilization in surface and deep soils in dynamic, mixed-species cover-cropping systems. The result will be enhanced understanding of the outcomes of cover-cropping practices, with potential policy relevance.
The Amazon and Cerrado biomes hold vast carbon stores that are threatened by fires associated with both land clearing and a warmer, drier climate. However, the long-term responses of fire-impacted areas within these ecosystems could be dramatically different. While Amazon forests have not evolved with fire as a pressure, transitional forests and the Cerrado are adapted for—and dependent on—regular fire for sustaining their structure and function. Understanding the effects of fire disturbance on carbon dynamics and the potential pathways of recovery in these ecosystems is critical. By mapping carbon stocks in fire-disturbed ecosystems and creating larger-scale scenarios, this work will provide a rich picture of what future carbon storage could look like under a range of possible fire disturbance/recovery dynamics.
When most people think about the jet stream, if they think about it at all, it’s usually in the context of the high-altitude, fast moving wind currents of the northern hemisphere that enable speedy west-to-east long-haul flights. But the polar jet stream also plays a major role in our daily lives: the weaker it gets, the wackier our weather is, from the Texan deep freeze of 2021 to the snow bombs that have pummelled the West Coast over the past two weeks, and the winter storms now heading for the East Coast and Europe. It’s not just cold weather—an unstable jet stream can also lead to severe heat waves, droughts, or excessive amounts of rain. And the polar jet stream appears to be weakening, according to scientists, as a result of Arctic warming caused by climate change.
Salt marshes across Buzzards Bay, in Southern Massachusetts, are experiencing significant stress from climate-change driven sea level rise, but also a range of other factors including tidal restrictions and nitrogen pollution. A recent report, “Buzzards Bay Salt Marshes: Vulnerability and Adaptation Potential,” released today by the Buzzards Bay Coalition, Buzzards Bay National Estuary Program, Woodwell Climate Research Center, and the U.S. Geological Survey assessed the loss and degradation of twelve salt marsh sites in Westport, Dartmouth, Fairhaven, Mattapoisett, Marion, Wareham, Bourne and Falmouth. Using regular field monitoring alongside remote sensing data, the report reveals the widespread loss of salt marshes – in some places measuring up to 20-percent over an 18-year period.
Buzzards Bay Coalition and Buzzards Bay National Estuary Program began field monitoring salt marsh vegetation and elevation four years ago.
“We knew that salt marshes face a number of stressors, and we’d heard from our members that marshes in their neighborhoods were changing, but there was no consistent monitoring to track the health or stability of these critical ecosystems around Buzzards Bay,” explains lead author Dr. Rachel Jakuba, Buzzards Bay Coalition’s vice president for bay science.
Salt marshes are important ecosystems that filter nutrients, store carbon, provide critical habitat for fish and birds, and protect coastal properties from storm surge. Salt marshes – existing at the interface of the land and sea – are adapted to a fluctuating environment with plants capable of tolerating regular inundation with salt water; however, salt marshes’ natural ability to adapt has limits, which this report documents.
“Looking at remote imagery of salt marshes all around Buzzards Bay, we documented how the marshes changed over a couple of decades. Marshes with low elevation appear most vulnerable to sea level rise and showed the greatest loss,” said co-author Dr. Joe Costa, executive director of the Buzzards Bay National Estuary Program.
Co-author Neil Ganju of the U.S. Geological Survey added, “We’ve applied one of the tools used in this report up and down the East Coast. Marshes in the region are facing the same issues as in Buzzards Bay, and researchers are working hard to better understand marsh loss and ways to mitigate it.”
The news is not all bad though, as these iconic features of the Buzzards Bay coast are resilient and have the potential to migrate landward.
“While the headline of salt marsh loss is sobering, these are remarkable ecosystems that, when given the room to adapt, can continue to flourish. This makes the protection of adjacent lands all the more important,” said co-author Linda Deegan of the Woodwell Climate Research Center.
Scientists conducted the analysis to better understand and document salt marsh change, and the Buzzards Bay Coalition produced this report with the hope that it will be used by municipalities faced with zoning and permitting decisions near salt marshes; by natural resource agencies capable of undertaking direct marsh restoration strategies such as runneling, thin-layer deposition, ditch management and others; and by private landowners, who might consider preserving the uplands that they own adjacent to salt marshes to allow marshes to migrate — unimpeded by seawalls, roads and buildings — in the future.
“While much of this loss is attributable to climate change-driven sea level rise, some is due to legacy effects from human-made alterations like the creation of drainage ditches and marshes being altered for development and agriculture. We’re hoping that this research will be useful to planners, policymakers, and resource managers trying to mitigate the future impacts of both of those drivers,” said co-author Dr. Alice Besterman, assistant professor at Towson University.
Salt marshes across Buzzards Bay, in Southern Massachusetts, are experiencing significant stress from climate-change driven sea level rise, but also a range of other factors including tidal restrictions and nitrogen pollution. A recent report, “Buzzards Bay Salt Marshes: Vulnerability and Adaptation Potential,” released today by the Buzzards Bay Coalition, Buzzards Bay National Estuary Program, Woodwell Climate Research Center, and the U.S. Geological Survey assessed the loss and degradation of twelve salt marsh sites in Westport, Dartmouth, Fairhaven, Mattapoisett, Marion, Wareham, Bourne and Falmouth. Using regular field monitoring alongside remote sensing data, the report reveals the widespread loss of salt marshes – in some places measuring up to 20-percent over an 18-year period.
Buzzards Bay Coalition and Buzzards Bay National Estuary Program began field monitoring salt marsh vegetation and elevation four years ago.
“We knew that salt marshes face a number of stressors, and we’d heard from our members that marshes in their neighborhoods were changing, but there was no consistent monitoring to track the health or stability of these critical ecosystems around Buzzards Bay,” explains lead author Dr. Rachel Jakuba, Buzzards Bay Coalition’s vice president for bay science.
Salt marshes are important ecosystems that filter nutrients, store carbon, provide critical habitat for fish and birds, and protect coastal properties from storm surge. Salt marshes – existing at the interface of the land and sea – are adapted to a fluctuating environment with plants capable of tolerating regular inundation with salt water; however, salt marshes’ natural ability to adapt has limits, which this report documents.
“Looking at remote imagery of salt marshes all around Buzzards Bay, we documented how the marshes changed over a couple of decades. Marshes with low elevation appear most vulnerable to sea level rise and showed the greatest loss,” said co-author Dr. Joe Costa, executive director of the Buzzards Bay National Estuary Program.
Co-author Neil Ganju of the U.S. Geological Survey added, “We’ve applied one of the tools used in this report up and down the East Coast. Marshes in the region are facing the same issues as in Buzzards Bay, and researchers are working hard to better understand marsh loss and ways to mitigate it.”
The news is not all bad though, as these iconic features of the Buzzards Bay coast are resilient and have the potential to migrate landward.
“While the headline of salt marsh loss is sobering, these are remarkable ecosystems that, when given the room to adapt, can continue to flourish. This makes the protection of adjacent lands all the more important,” said co-author Linda Deegan of the Woodwell Climate Research Center.
Scientists conducted the analysis to better understand and document salt marsh change, and the Buzzards Bay Coalition produced this report with the hope that it will be used by municipalities faced with zoning and permitting decisions near salt marshes; by natural resource agencies capable of undertaking direct marsh restoration strategies such as runneling, thin-layer deposition, ditch management and others; and by private landowners, who might consider preserving the uplands that they own adjacent to salt marshes to allow marshes to migrate — unimpeded by seawalls, roads and buildings — in the future.
“While much of this loss is attributable to climate change-driven sea level rise, some is due to legacy effects from human-made alterations like the creation of drainage ditches and marshes being altered for development and agriculture. We’re hoping that this research will be useful to planners, policymakers, and resource managers trying to mitigate the future impacts of both of those drivers,” said co-author Dr. Alice Besterman, assistant professor at Towson University.
The longest thunderstorm in the history of Arctic observation was recorded in July 2022—marking an increase in extreme weather activity in a region that is generally devoid of such events.
This storm was reported by scientists from the Arctic and Antarctic Research Institute at the Russian hydrometeorological observatory on the Severnaya Zemlya peninsula, just north of Siberia. Thunderstorms are usually concentrated in the warmer parts of the planet so it is surprising to see one of this duration so near the North Pole.
Ecological research seeks to describe the interactions between an environment and the species living there. But there’s one important species most ecological work overlooks—us.
Human society, our histories, our economies, our politics, has played just as much hand in shaping the ecology as the migration of animals or the shifting of continents has. The darker sides of human history—war, colonialism, racism—have had especially long-lasting effects. Yet ecological research seldom attempts to grapple with these forces. Ignoring the human element within the history of a landscape has led to research and conservation efforts that are at best, clumsy, and at worse, extractive and exploitative.
A recent paper, spearheaded by Yale Ph.D. student Gabriel Gadsden and Woodwell Climate postdoctoral researcher Dr. Nigel Golden, under the advisement of Yale University Professor, Dr. Nyeema Harris, has laid out a more interdisciplinary approach to conservation ecology, one that reckons with the negative histories affecting research sites and uses that knowledge to reduce bias within the scientific process. Failing to do so, the paper argues, perpetuates a societal “landscape of fear” — one that restricts the potential benefits of science for both wildlife and human communities.
In ecology, the term “landscape of fear” is used to describe animal behaviors as a product of perceived risk or fear, specifically of predation. For example, if you are an elephant, Dr. Golden suggests, one of the largest animals moving through the physical landscape, you have few predators; your risk of being hunted is low. The amount of time you can spend searching for food isn’t limited by fear. But if you are one of the Arctic ground squirrels that Dr. Golden conducted his graduate research on, everything from grizzly bears to golden eagles to foxes and weasels, is hunting you. The elephant’s behavior is constrained by access to food and water and other resources, but the ground squirrel’s behaviors are likely more motivated by fear. Animals perceive threats within a landscape and react accordingly.
But, as Gadsden points out, “Fear is an emotion that humans deal with, too.”
Fear moves like a predator on human landscapes, creating perceptions of places and people that may be incomplete or flat out inaccurate. When science is constrained by these perceptions, everything from the methods used, to the research questions being asked, is tainted with bias.
“If you fear a landscape, then you probably aren’t going to go there to do your research,” Gadsden explains. “If you have this dominant idea about people that maybe isn’t true, you’re not going to seek collaborations with them. Or maybe you will do research in that area, but it won’t be community-led and community-oriented. All of the unspoken restrictions that fear induces has implications on research outside of the significance of a result.”
Like a predator, these fears often target the most vulnerable groups. In urban environments, unequal distribution of greenspace has resulted in less wealthy, often minority, neighborhoods suffering much higher risks of extreme heat and consequent health impacts. This disparity has its origins in racist housing and development policies like redlining—which limited financial services available to people deemed “hazardous to investment,” and reduced financial growth in their neighborhoods.
At a larger scale, these biases can be seen in the types of environments that are prioritized for conservation. There is a false notion that “pristine” wilderness holds more value than areas deemed degraded or developed, an idea that ignores the fact that many “pristine” wilderness spaces were shaped for centuries by Indigenous communities.
Acknowledging history, Gadsden and Dr. Golden say, is a critical first step in conducting science and conservation that doesn’t play into these unequal and unjust perceptions— causing more harm, even when the intention is to help.
In the case of the first U.S. National Parks, intended to protect the country’s natural landscapes from development, the removal of Indigenous peoples has left an indelible mark on the history and ecology of the region. Not understanding that Native communities had been maintaining healthy and productive forests using controlled fire, U.S. Forest Service policies harshly suppressed fires for over a century which altered the ecological composition of the forest and allowed dry fuel to build up. This, coupled with a climate growing hotter and drier, created the conditions for the intense and out-of-control wildfires seen today.
Examples like this are common in the field of conservation when researchers enter a new landscape without knowledge of the site’s histories.
“We know that our science is not just informed by the landscape or the species,” says Dr. Golden. “It’s also informed by the social and political context around it.”
So Gadsden and Dr. Golden recommend scientists begin their research by asking the right questions. “Okay, so this is your study site?” says Gadsden. “How did your study site come to be?”
Recognition of these histories could be as simple as a paragraph embedded in an article, or a land acknowledgement published alongside the research, but the paper outlines additional steps for researchers to take. Including local communities at the outset of a project, especially when developing conservation plans that will impact them, can further strip back biases and help scientists better understand local perspectives on the natural environment.
“One generally would not venture into the jungle without first building a relationship with a local guide,” the authors write in the paper, pointing out that it should be equally unadvisable to venture into a community without building connections with people who can guide you through it.
Their final recommendation involves collaboration across disciplines. The paper suggests that scientific research could benefit from “co-creating knowledge” with groups focused on sociological or environmental justice research to grapple with the ways societal and political forces have shaped ecology.
Dr. Golden has been applying these concepts to Woodwell Climate’s Polaris Project, which he coordinates. The project gives young scientists hands-on experience working in an Arctic environment.
“But it’s unethical for us to bring folks into Arctic science without having a clear understanding of the history of the Arctic and Arctic peoples, and how we’ve gotten to the problems that we are trying to solve today,” Dr. Golden explains. So the program is working on better understanding the history of their field site in Alaska. Polaris has partnered with the grassroots community leadership group Native Movement to conduct anti-colonial training for their participants.
“Knowing the history and context of the communities living in Alaska is one of the guidelines that we can use for co-creating knowledge with those communities,” says Dr. Golden.
These recommendations, Dr. Golden hopes, will provide a path forward for scientists looking to reduce bias in their research, and bring forward the voices of groups historically marginalized by biased science.
“If we focus on the most marginalized, we’re more likely to produce outcomes that are equitable for everyone,” Dr. Golden says.