The Amazon rainforest’s record-breaking drought hit home for Raimundo Leite de Souza one October morning, he said, when he woke to find the stream that runs behind his house had dropped nearly a foot overnight, stranding his skiff in a mudflat.
As weeks passed, Souza said, rotting fish washed up on the banks of the Jaraqui, a tributary of the Rio Negro. Rodents thrashed in the mud searching for water. Carcasses of caimans and cobras turned up in the forest.
Tomato growers in central India have been increasingly worried about the volatility that extreme weather events have brought to the region. For much of the area, the last decade has been punctuated by severe droughts that led to significant crop loss, impacting the livelihoods of local farmers.
On the other side of the world, Silicon Valley startup ClimateAi is developing an artificial intelligence platform to evaluate how vulnerable crops are to warming temperatures over the next two decades. The tool uses data on the climate, water and soil of a particular location to measure how viable the landscape will be for growing in the coming years.
When the United Nations held its first annual climate conference in 1995 in Berlin, Michael Jordan was still in the NBA, Google didn’t exist yet, and cellphones were rare. Times have changed. But 28 years—and 28 conferences later—we’re still not moving quickly enough to deal with climate change.
This week, tens of thousands of people will attend the 28th “COP,” or Conference of Parties, in Dubai. You might be wondering how much these summits actually accomplish. Here’s a short guide to the process.
Continue reading on Fast Company.
The second round of 2023 Fund for Climate Solutions (FCS) awardees has been announced. The FCS advances innovative, solutions-oriented climate science through a competitive, internal, and cross-disciplinary funding process. Generous donor support has enabled us to raise more than $10 million towards the FCS, funding 58 research grants since the campaign’s launch in 2018. This latest cohort of grantees includes five projects working toward a range of scalable solutions to address climate impacts around the globe, from boreal and tropical forests, to heat-impacted cities, to much-discussed and still-struggling carbon markets.
As the climate changes, wildfires in boreal forests are intensifying and putting tremendous amounts of carbon at risk of accelerated release from trees and soils to the atmosphere. Motivated by previous Woodwell Climate research, the US Fish and Wildlife Service has recently set aside 1.6 million acres of the Yukon Flats National Wildlife Reserve in Alaska for enhanced fire management to protect carbon and permafrost, and has invited our collaboration to assess the potential and cost-effectiveness of boreal fire management as a to-date overlooked natural climate solution. This invitation is an unprecedented opportunity for actionable scientific research and timely policy impact. Supported by the FCS, the team will conduct the first-ever field study of boreal fire management for climate mitigation. Then, they will bring this work and its implications to decision makers and interest holders in Alaska and DC, positioning Woodwell Climate to expand the reach of this work within Alaska and, ultimately, to other boreal nations.
Climate change is exacerbating the vulnerability of people experiencing homelessness in Las Vegas, NV as they face increasing extreme heat risk on the street and flood risk inside stormwater infrastructure. In the city, people experiencing homelessness cope with extreme heat by sheltering in stormwater infrastructure. During the summer of 2022, Las Vegas experienced its wettest monsoon season in over 10 years, resulting in the loss of two lives due to flooded tunnels. This award will support our partnership with local homelessness organizations to develop ways to measure projected lethal heat days and extreme flooding, informing emergency evacuations and raising awareness of climate risk. Research Assistant Monica Caparas will be the on-site scientific lead, and serve as the point of contact for all local partnerships. Because the threat of climate change to people experiencing homelessness isn’t limited to Las Vegas, this work aims to advance climate justice by creating a replicable framework and best practices for establishing and nourishing working relationships with local communities, social service organizations, and government agencies.
Tanguro Field Station celebrates its 20th anniversary in 2024. Since its establishment by the Amazon Environmental Research Institute (IPAM Amazônia), 177 research papers have been published based on work conducted there. More than 215 students and journalists have participated in activities at Tanguro and produced theses, dissertations, policy briefs, and special content in prestigious journals and news outlets. While research at Tanguro has significantly advanced our understanding of tropical regions and continues to provide valuable ecological insights, there is a pressing need to synthesize past research. This award will support the preparation and publication of a synthesis paper that consolidates the findings and key insights from 20 years of research at Tanguro to facilitate a better understanding of the complex interdependencies within tropical ecosystems. This synthesis will also aid in developing a proposal to establish a Biological Integration Institute (BII-NSF) at Tanguro to promote collaboration, interdisciplinary approaches, and knowledge sharing among researchers, policymakers, and people affected by climate change and deforestation in the region.
Extensive field campaigns in the boreal forest and the western US have revealed that at an increasing number of study sites, tree species are failing to re-establish after fire destroys the stand. Such post-fire recruitment failure is increasing due to climate change, leading to a loss of both wildlife habitat and carbon storage, and reducing the area’s ability to provide ecosystem services. However, the large-scale extent of recruitment failure has not been studied—this is a key knowledge gap. The goal of this research is to perform a pilot study on existing sites in Yellowstone National Park to prove the feasibility of using remote sensing to detect recruitment failure, with the ultimate goal of obtaining further funding from US government agencies or private foundations. Bringing together Woodwell Climate scientists currently working on separate projects, including Permafrost Pathways, NASA ABoVE, and NSF Arctic System Science programs, this project will build on and synergize their existing research.
Carbon markets could be a powerful mechanism for incentivizing natural climate solutions (NCS) while at the same time enhancing the well-being of land stewards and their communities. However, these markets have faced intense criticism for a lack of transparency and integrity. The project team has been working to develop the Landscape Capital Index (LCI), an independent, data-driven tool for assessing the potential of any tract of land to deliver climate mitigation, co-benefit, and conservation outcomes. With support from the FCS, the team will develop a web-based data platform prototype for beta testing and development into an interactive solution. This future state-of-the-art platform will enable access to and engagement with the LCI. The project team will also conduct targeted validation research to make sure the LCI performs well for strategic use cases in key geographic areas, with the goal of building user confidence in the data product’s integrity.
In a busy hallway of the Dena’ina Civic and Convention Center in Anchorage, Alaska, Arctic Communications Specialist, Jess Howard, and Climate Adaptation Specialist, Brooke Woods, stand in front of a large print-out of a map of Alaska. The map was created by Greg Fiske, Senior Geospatial Analyst at Woodwell Climate, to show the topography of the state in artfully shaded greens, browns, and whites. At the moment it is covered in handwritten notes.
Woods had suggested they bring the map to the Alaska Forum on the Environment (AFE) and invite conference attendees to add notes describing their community’s experiences with the impacts of climate change. Their table remained crowded throughout the day, as people stopped to point out the rivers and mountain ranges around where they lived, and swap stories about erosion, flooding, permafrost thaw, and missing species.
“Even on this huge map of Alaska,” says Howard. “People were coming up and immediately saying ‘there’s this river, there we are.’ Knowing exactly where to point was just so immediate because of the deep connection Alaska Native communities have to the land and water, of which they are the original stewards.”
Fiske who, alongside Cartographer Christina Shintani, leads the Center’s map-making activities, has seen many moments like this one over his decades-long career—moments where maps start conversations, foster connections, and get people thinking. It’s the reason he brings maps with him wherever he goes, and encourages others to do the same. It’s the reason he keeps a table at the Center’s offices covered in printed maps, sometimes finished pieces for display, sometimes draft versions to workshop.
Because when the maps come out, so do the stories. And the stories help us better understand our place in the changing world.
“But Google Maps exists. Haven’t all the maps been made already?”
Fiske and Shintani have heard it before: the idea that “everything has already been mapped.” Why should we create new maps of familiar places?
In a world beset by hundreds of transformative forces, of which climate change is one, Shintani responds that cartography is just as important now, if not more important than ever.
“The world is constantly changing,” says Shintani. “If it weren’t, we wouldn’t spend billions of dollars to capture satellite imagery every minute of the day. Political boundaries change every year, glaciers disappear, wildfires break out and alter the landscape, and we have to map the physical and social phenomena to understand that changing world.”
The act of creating a map can also be a method of revealing something new from existing data, which is why cartography plays a central role in research at Woodwell Climate.
Fiske and Shintani field frequent requests from scientists for maps to accompany research papers. According to Fiske, “sometimes the data for that is readily available, but sometimes it takes an entire geospatial analysis to derive what you need to make the map. And you won’t really know until you start iterating.” Often, viewing data on a map will inspire new scientific questions for researchers to chase down. The act of creating maps is not just an end product, it can be a critical step in the scientific process.
In their time at the Center, Fiske and Shintani have worked on maps detailing forest carbon in the United States, global drought forecasts, fire detections in the Amazon rainforest, and Arctic communities located on permafrost ground—they are no strangers to working across disciplines.
“Cartographers are generalists,” says Shintani. “We have to know a little bit about a lot of things, which actually benefits us as climate communicators, since the maps we’re making aren’t meant to inform other expert climate scientists, they are trying to convey information to everyone else.”
“Cartography isn’t really one profession,” Fiske clarifies. “It’s a collection of professions.”
A modern cartographer, according to Fiske, is a data analyst, a statistician, a designer, a programmer, a storyteller, and an artist all rolled into one. Skills from each profession, and a healthy curiosity about a hundred other topics, are required in order to create maps that are informative, attention-grabbing, and intuitive to read. Fiske entered into cartography through the world of computer coding, discovering an affinity for programming in his high school’s computer lab. He picked up the other skills later, with guidance from mentors, learning first to apply coding to geospatial data, and then how to display that data visually, and even make it beautiful.
Shintani’s entryway into cartography was through science. She had intended to study the physical geography of rivers, when a class on cartography changed her direction.
“With maps, I could organize everything in a way that made sense to me—because the world is so often organized in ways that don’t make sense—and I could make them beautiful,” says Shintani. “It was the first time I felt like I was really good at something.”
Fiske and Shintani’s cartographic talents eventually brought them both to Woodwell Climate, where their knowledge of various fields has helped them solve research questions and communicate new findings to the public.
“The day-to-day involves bringing together datasets, developing a clear story, making it look intuitive through design, taking the experts’ thoughts and data and making it a little more tangible for folks,” says Shintani.
In another era, a cartographer might also have been somewhat of an adventurer—conducting expeditions to map hills and valleys, using mathematical conversions to capture the detailed curves of a coastline in a meticulously hand-drawn document. These days, cartography has much more to do with sitting behind a computer, manipulating massive datasets created by satellite observation and tweaking color pallets and font sizes using a variety of software.
The proliferation of satellite data has made the process of map-making much quicker and more accessible—no longer requiring long expeditions just to gather information on topography or ground cover. It’s allowed a shortcut to understanding the shape of places you’ve never been. A shortcut, Fiske says, but not a replacement.
“I would never have been able to make that map,” says Fiske, referring to the map of Alaskan topography that Howard and Woods brought to AFE, which earned him two awards from the Esri User Conference earlier this year. “If I hadn’t been to Alaska, seen it from an airplane, looked at those mountains, and seen what it looks like between the green valleys and the white glaciers.”
Travel is something Fiske believes should remain a part of the cartographer’s toolkit whenever possible, because a thorough understanding of a place is critical to being able to map it. Things like the natural colors of the landscape at different times of year, the true scale of glaciers when you are standing beneath them, the shape of a slumping and eroding hillside, give a fuller picture of the reality on the ground.
“A good map is a close connection to reality,” says Fiske. The closer to reality a map is, the more intuitive it is to orient yourself on it, understand the information the map is trying to convey. Fiske travels regularly, joining float trips with Science on the Fly or Permafrost Pathways’ visits to field sites and Alaska Native partner communities. He plays a role in the science, helping navigate and collect data, but values the experiences more for the insights he can use to inform future maps.
“If you’ve stood on the tundra,” he says. “Then you can make a better map of the tundra.”
A decade ago, Fiske recalls, he was helping a colleague map her work studying chimpanzees in the Congo Rainforest.
“We were going through and pulling coordinates out, sifting through notebooks that had obviously been sitting in the field for years, covered in water stains and mud.” They were overlaying documented nesting sites with data on forest type and at some point, Fiske turned around and realized she was in tears.
“Seeing it formulate on the screen, she was overcome with emotions,” says Fiske. “The map reflected what she had been carrying around in her mind the whole time.”
Maps, in Fiske’s experience, create instant—sometimes emotional—connections between people and places. They place individuals in the context of the wider world and put long-held ideas down on paper to be shared.
Which is why Fiske believes anyone can and should make maps. He has been helping the Permafrost Pathways team bring cartography into their work with Indigenous Arctic communities through a method called participatory mapping, which combines community input with technical expertise to create maps representing collective knowledge. Howard is also working with Fiske to create a digital version of his Alaskan topography map that incorporates the stories shared through the exercise at AFE.
Looking forward, Fiske wants to push his career more and more towards helping others create maps. Because everyone has stories to share about the places they know—whether they come from generations spent living on a landscape, or one lifetime’s work spent studying a single ecosystem.
“I want to help folks make maps,” says Fiske. “And tell their story.”
Dalip Ram, a rice farmer in the north Indian state of Haryana, inspects an app on his smart phone showing a satellite map of his farm. This app is the product of a San Francisco-based tech company called Boomitra that uses data about the farmer’s land to calculate how much carbon he is managing to lock into the soil of his small plot in order to generate carbon credits. Boomitra just won the Earthshot Prize – which seeks out “the most innovative solutions to the world’s top environmental challenges” – in the ‘Fix Our Climate’ category.
On the heels of one of the warmest winters on record last year, StormTeam 5 went to three experts in the field of long-range weather forecasting to get their take on what winter in Massachusetts and New England will be like this year.
All three cited signals that indicate a highly variable season is ahead.