Imagining Earth’s most probable futures

New climate education initiative portrays the warmer worlds we are likely to see this century, in hopes of preventing them

Probable Futures website screenshot
One point five—most readers will recognize that number as the generally accepted upper limit of permissible climate warming. With current temperatures already hovering at 1.1 degrees Celsius above the historical average, the race is on to hit that target, and the likelihood that we will surpass it is growing. Even if we do manage a 1.5 degree future, that’s still warmer than today’s world, which is already seeing devastating climate impacts.

So what will it actually feel like to live in a 1.5 degree world—or a 2 degree one, or even 3? The Probable Futures initiative has built a tool to help everyone imagine.

Building a bridge between science and society

Probable Futures is a newly launched climate literacy initiative with the goal of reframing the way society thinks about climate change. The initiative was founded by Dr. Spencer Glendon, a senior fellow with Woodwell Climate who, after investigating climate change as Director of Research at Wellington Management, noticed a gap in need of bridging between climate scientists and, well… everyone else.

According to Dr. Glendon, although there was an abundance of available climate science, it wasn’t necessarily accessible to the people who needed to use it. The way scientists spoke about climate impacts didn’t connect with the way most businesses, governments, and communities thought about their operations. There was no easy way for individuals to pose questions of climate science and explore what the answers might mean for them.

In short, the public didn’t know what questions to ask and the technical world of climate modeling wasn’t really inviting audience participation. But it desperately needed to. Because tackling climate change requires everyone’s participation.

“The idea that climate change is somebody else’s job needs to go away,” Dr. Glendon says. “It isn’t anybody else’s job. It’s everybody’s job.”

So, working with scientists and communicators from Woodwell, Dr. Glendon devised Probable Futures—a website that would offer tools and resources to help the public understand climate change in a way that makes it meaningful to everybody. The site employs well-established models to map changing temperatures, precipitation levels, and drought through escalating potential warming scenarios. The data is coupled with accessible content on the fundamentals of climate science and examples of it playing out in today’s world.

According to the initiative’s Executive Director, Alison Smart, Probable Futures is designed to give individuals a gateway into climate science.

“No matter where one might be on their journey to understand climate change, we hope Probable Futures can serve as a trusted resource. This is where you can come to understand the big picture context and the physical limits of our planet, how those systems work, and how they will change as the planet warms,” Smart says.

Storytelling for the future

As the world awakens to the issue of climate change, there is a growing group of individuals who will need to better understand its impacts. Supply chain managers, for example, who are now tasked with figuring out how to get their companies to zero emissions. Or parents, trying to understand how to prepare their kids for the future. Probable Futures provides the tools and encouragement to help anyone ask good questions about climate science.

To that end, the site leans on storytelling that encourages visitors to imagine their lives in the context of a changing world. The maps display forecasts for 1.5, 2, 2.5, and 3 degrees of warming—our most probable futures, with nearly 3 degrees likely by the end of the century on our current trajectory. For the warming we have already surpassed, place-based stories of vulnerable human systems, threatened infrastructure, and disruptions to the natural world, give some sense of the impacts society is already feeling.

According to Isabelle Runde, a Research Assistant with Woodwell’s Risk Program who helped develop the maps and data visualizations for the Probable Futures site, encouraging imagination is what sets the initiative apart from other forms of climate communication.

“The imagination piece has been missing in communication between the scientific community and the broader public,” Runde says. “Probable Futures provides the framework for people to learn about climate change and enter that place [of imagination], while making it more personal.”

Glendon believes that good storytelling in science communication can have the same kind of impact as well-imagined speculative fiction, which has a history of providing glimpses of the future for society to react against. Glendon uses the example of George Orwell who, by imagining unsettling yet possible worlds, influenced debates around policy and culture for decades. The same could be true for climate communication.

“I’m not sure we need more science fiction about other worlds,” Glendon says. “We need fiction about the future of this world. We need an imaginative application of what we know.” Glendon hopes that the factual information on Probable Futures will spark speculative imaginings that could help push society away from a future we don’t want to see.

For Smart, imagining the future doesn’t mean only painting a picture of how the world could change for the worse. It can also mean sketching out the ways in which humans will react to and shape our new surroundings for the better.

“We acknowledge that there are constraints to how we can live on this planet, and imagining how we live within those constraints can be a really exciting thing,” Smart says. “We may find more community in those worlds. We may find less consumption but more satisfaction in those worlds. We may find more connection to human beings on the other side of the planet. And that’s what makes me the most hopeful.”

Visit probablefutures.org.

‘Summer of extremes’ briefing helps meteorologists connect extreme weather events to climate change

satellite imagery of hurricane Ida
The summer of 2021 has been a summer of extremes. Catastrophic wildfires, drought, flooding and deadly heat waves are all signals of a warming climate, but the nature of that connection is often not well understood by the public. To help deepen understanding of the links between extreme weather and climate change, Woodwell hosted a briefing last week for a group that is always thinking about the weather: meteorologists.

The briefing was led by meteorologist Chris Gloninger of KCCI 8 Des Moines, who moderated a Q&A with Woodwell senior scientist Dr. Jennifer Francis and Assistant Scientist Dr. Zach Zobel. Dr. Francis and Dr. Zobel provided attendees with insight into how weather events, like the recent hurricanes Henri and Ida or flash flooding in Tennessee for example, are exacerbated by climate change.

Meteorologists, tasked with preparing local communities for changes in the weather, are uniquely positioned to communicate the role of climate change in weather patterns to a broad public audience. According to Dr. Francis, meteorologists are “often the only scientists that people come into contact with.” Which means they have a valuable opportunity to shape people’s perception of weather events as a consequence of climate change.

For Dr. Zobel, a meteorologist by training himself, one of the best ways to make those connections is by highlighting the specific elements of extreme events that the science shows are clearly linked to warming.

“Rather than focus on the storm itself, focusing on the features within the storm that climate models and observations show are clearly going to increase,” Dr. Zobel said. He cited the all time record for the amount of rainfall in one hour in New York that was broken during Henri. Heavy bursts of precipitation are likely to become more common with climate change, as a warmer atmosphere can hold more water vapor.

Meteorologists joined the briefing from across the United States, and were interested in the best ways to communicate climate science across diverse audiences, some of which might not be familiar with or accepting of climate science. Dr. Francis used the example of farmers in the Midwest who have reported more persistent weather conditions—longer droughts or storms—affecting their crops.

“If we can take that and link it back to how we think climate change is starting to cause more persistent weather patterns, that is something we can talk to them about that is really affecting how they do their business, how they live their lives, and is certainly something they are seeing every day,” Dr. Francis said.

Dr. Zobel also emphasized the need to communicate climate change in terms of personalized, individual impacts.

“Until we are able to do that, climate change may seem like a distant, far away problem,” Dr. Zobel said. “Once people see it’s affecting them locally they tend to re-evaluate.”

Riparian forests stand guard over Amazonian streams

riparian forest in an agricultural field in Brazil
In the remote headwaters of the Amazon, a small strip of forest—just 30 meters wide on either side of a stream—slices through a vast agricultural field. Although tiny, this forest stands as an important guardian of the health and biodiversity of the Amazon Rainforest.

In many places, riparian forests along the edges of streams and rivers are the last remaining forests on a landscape largely converted to agriculture. Brazil’s forest code requires a permanent protection area be left on the banks of waterways to buffer the effects of land use change on downstream ecosystems. But how effective are such small slivers of forest in the face of widespread landscape change? A trio of papers from Woodwell’s Tanguro Ranch research station in Mato Grosso, Brazil shows that even small forests can have big impacts on biodiversity and nutrient transfer.

Maintaining the ecosystem highway

Rivers act as highways through the forest, carrying species, nutrients and organic matter across the landscape. Trees play an important role in regulating those roadways, both drawing up water and nutrients and depositing organic matter in the form of leaves, seeds, and fruit. Clear the forest, and the traffic patterns for those nutrients will change.

Dr. KathiJo Jankowski, a research ecologist at the United States Geological Survey, conducted research with Woodwell on the question of whether maintaining riparian buffers successfully mitigated that change.

“Are streams now processing terrestrial materials differently? Are they processing carbon differently? And are they processing nutrients differently?” Dr. Jankowski asks. “We are interested in these questions, both in terms of how they affect stream food webs, and how they affect downstream ecosystems.”

She waded through the streams at Tanguro Ranch, collecting data—dissolved oxygen levels, leaf litter, temperature measurements—to answer these questions. When she compared data from agricultural streams with riparian buffers to intact forests, she found only subtle shifts in basic ecosystem functions. As long as those buffer forests remained, the streams mostly continued to flow as they always had.

“It provides good evidence that they are doing their job,” Dr. Jankowski said. “It highlights the importance of protecting those buffers because they are constantly under threat from people wanting to develop the land or simply not wanting to restore buffers that have been illegally removed.”

Preserving aquatic and terrestrial diversity

One difference Dr. Jankowski did observe, however, was in the amount of leaf litter present in the streams. Less overall vegetation on the landscape led to less organic matter in agricultural streams, a small change that can impact the wider food web.

Ecologist and researcher from the University of Brasília, Dr. Nubia Marques was conducting complementary research around the same time as Dr. Jankowski, but her research focused on the animals that rely upon the ecosystem functions Dr. Jankowski was studying. Tiny macroinvertebrates—crustaceans or insects that feed on stream organic matter—are found in most aquatic ecosystems, and their presence can indicate the overall health of a system.

According to Dr. Marques, degradation of riparian forests tends to simplify macroinvertebrate communities. Changes to available food resources impact species that rely on specific food more strongly than generalist species. Three taxonomic orders, Ephemeroptera, Plecoptera and Trichoptera (EPT) which include species like mayflies, stoneflies, and caddisflies, are particularly sensitive to disturbances.

“Many macroinvertebrates in the EPT orders cannot survive in sites of intense disturbance, so their absence may indicate that the health of the stream is not doing well when compared to similar streams that have not been disturbed at all,” Dr. Marques says.

Dr. Marques examined overall species composition, as well as functional composition (the presence of different feeding groups) across forested and agricultural streams. Streams with buffers tended to have greater overall diversity and slightly higher abundance of EPT species than those without, though watershed-level clearing did cause drops in EPT species with or without buffers. Because macroinvertebrates form the base of the food web, changes in their abundance have the potential to ripple upwards to the species communities that feed on them.

Beyond preserving biodiversity inside the streams, riparian forests are also important habitat for terrestrial rainforest species. Biologist at the State University of Mato Grosso and researcher at the Amazon Environmental Research Institute, Dr. Leonardo Maracahipes-Santos conducted detailed inventories of the size and species of trees, shrubs and vines in each of the transects to understand how the riparian forests themselves differed between intact and agricultural watersheds.

“There are some visible differences, that if you know the species you can see right away,” Dr. Maracahipes-Santos says. “One difference I noted was that in the agricultural riparian forest you tend to see more gaps. Also there are some species along the edges that are known to be pioneer species, they signal some level of degradation or turnover.”

His analysis confirmed his observations. Riparian forests tended to differ most from the composition of intact forests at the edges, where niches had been opened for species that normally don’t occur in dense forest. Also, as seen with the critters in Marques’s study, some plant species were just not as resilient to disturbance and disappeared completely from agricultural landscapes.

Dr. Maracahipes-Santos’ work shows that, for all these little forests do, they themselves are vulnerable to the effects of fragmentation. Though the law establishes a minimum width for riparian forests, the amount of forest considered functionally intact may be much smaller, highlighting the need for wider buffers with softer edges leading into agricultural fields.

Protecting the headwaters protects the landscape

The three studies together also revealed landscape-scale changes took place in streams despite the presence of buffers. Dr. Jankowski found agricultural streams tended to be warmer on average and received more sunlight due to increased gaps in the canopy. With fewer trees to draw up water, stream levels were higher in agricultural landscapes as well. This tracks with Dr. Maracahipes-Santos’ findings—species sensitive to soggy soil were harder to find in the riparian buffers on agricultural land.

Dr. Jankowski’s experiment also introduced nitrogen and phosphorus into the stream systems, mimicking a fertilizer runoff event, to track how far the nutrients would flow. Tanguro is situated at the headwaters of the Xingu River, a major tributary of the Amazon, which means that anything added to the watershed here has the potential to affect the larger system downstream. Dr. Jankowski found that nitrogen traveled far downstream regardless of buffers. Multiply the effects of one nitrogen plume across the thousands of headwater streams in the Amazon watershed, and the impacts could potentially extend all the way to the Atlantic.

Despite this, riparian forests remain an important line of defense against pollutants and biodiversity loss. They will play a growing role in linking and protecting the Amazonian watershed as agricultural clearing continues. To play this part successfully, they will need support and protection of their own.