Haydee Hernandez-Yanez and Coleen smith measure carbon flux

Peterson Farm soil carbon ‘fieldwork’ for Opalite Media filming
June 2022

Nature-based climate solutions like reforestation, climate-smart agriculture, and wetland restoration harness natural processes to reduce greenhouse gas concentrations in the atmosphere and slow climate change. These approaches have substantial and growing support from bipartisan lawmakers, the private sector, and conservation-minded NGOs, but scientific tools to guide implementation and to accurately monitor outcomes are not adequately developed.

To confront that uncertainty and put nature-based climate solutions on a sound scientific footing, several dozen scientists and policy experts gathered in Washington D.C. in June of this year for a workshop sponsored by Indiana University, the U.S. Department of Energy, and the U.S. Carbon Cycle Science Program. The resulting white paper report reviews the current state of knowledge in this field, and describes the necessary research and technology investments to support effective mitigation policy.

According to the report’s lead author, Dr. Kim Novick from the Paul H. O’Neill School of Public and Environmental Affairs at Indiana University, “Nature-based climate solutions can play an important role in slowing the pace of climate change, but only if they are pursued alongside economy-wide decarbonization and guided by the best-available science.”

The white paper authors identify critical gaps in the science needed to support large-scale implementation of nature-based climate solutions and lay out a research agenda to fill these gaps. They also outline a set of principles that should guide future assessments of the effectiveness and viability of nature-based climate solutions. The result is a road map for producing information that will foster successful programs and policies—while avoiding energy wasted on those that do not.

Woodwell Senior Scientist, Dr. Jonathan Sanderman attended the gathering in June and contributed to the development of the paper.

“We’re at a unique moment in U.S. climate policy where the hard work of the research science community can be directly and immediately leveraged to help the U.S. fight climate change and become a world leader in implementing nature-based climate solutions.”

The report calls for a ~$1 billion (USD) coordinated investment in a national nature-based climate solution “Information Network” organized around coordinated ground-based experiments and monitoring that can inform rigorously benchmarked maps, model predictions, and protocol evaluations.

According to Dr. Benjamin Runkle, another report co-author and associate professor in the College of Engineering at the University of Arkansas: “Although the investment necessary to generate this information is not small, it is a fraction of the amount already allocated to implementation of nature-based solutions. Investing in sound science to predict, monitor, and verify the benefits of these strategies is fundamental to ensuring their success.”

In addition to their potential to stave off climate change, nature-based solutions also have a range of other benefits, including improving air and water quality,  promoting biodiversity, and providing economic opportunities. Many can also help communities adapt to a changing climate and improve resilience of agricultural and food systems.

“There is broad-scale agreement that many nature-based climate solutions benefit people and the environment through co-benefits,” said Dr. Emily Oldfield, a report co-author and agricultural soil carbon scientist with the Environmental Defense Fund. “We should push to incentivize those practices using a wide range of policy tools, while acknowledging there is no one-size-fits-all approach to ecosystem-based climate solutions.”

What can be done about permafrost thaw?

Monitor, model, and make sure Arctic communities have the support they need

With the Arctic warming 3 to 4 times faster than the rest of the world, permafrost thaw has become a significant climate threat. Scientists estimate that permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but with recent and projected thaw, the organic matter in permafrost is breaking down and releasing carbon dioxide and methane into the atmosphere, increasing the rate of climate change.

What we’re doing

Addressing this issue requires extensive data collection on permafrost emissions, as well as equitable strategies for adaptation by Arctic communities. To tackle this issue, Woodwell has partnered with the Arctic Initiative at Harvard Kennedy School, the Alaska Institute for Justice, and the Alaska Native Science Commission to connect experts in climate science, human rights, and public policy with frontline communities and high-level decision makers. The partnership is pioneering a six-year research program called Permafrost Pathways that will develop action plans to address the compounding impacts of permafrost thaw.

With the understanding that this needs to be a sustainable process with long-term impact, Permafrost Pathways’ scientists are expanding and coordinating a pan-Arctic carbon monitoring network to improve the accuracy of permafrost thaw emissions estimates. More precise measurements will fill critical data gaps and reduce uncertainties, so that permafrost emissions can be factored into global carbon budgets, climate models, targets, and measures for mitigation and adaptation. That, combined with high-resolution satellite and aircraft-based observations and advanced computer modeling, will allow for tracking the changing landscape in near real-time and more accurately projecting future emissions.

Permafrost Pathways is also collaborating with local communities to co-create Indigenous-led adaptation strategies. For many, relocation or infrastructure upgrades are needed urgently, but there is currently no process or resources to enable communities to move forward. With Arctic residents already feeling the brunt of climate change, the involvement of frontline communities is crucial in developing successful adaptation plans and effective policies.

What’s left to be done

Despite its big strides, Permafrost Pathways is still in its infancy and there is a long road ahead when it comes to tackling the complexity of permafrost thaw. Today, at least 192 countries, plus the European Union, have signed on to the Paris Agreement’s promise of reducing emissions to keep warming below 2 degrees C. But many emissions reduction goals do not include carbon released by permafrost thaw. The international community needs to take strong action to change this or else permafrost thaw could undermine climate goals.

In the Intergovernmental Panel on Climate Change’s 2021 report, permafrost thaw was named as an issue that should be included in carbon budgets and global reduction schedules, but often isn’t because there is not enough data on its climate impact. Continued support of data gathering programs like Permafrost Pathways will provide the international community, top country-level climate negotiators, and environmental ministers the knowledge needed to fix that oversight and start filling gaps.

In Arctic communities, permafrost thaw is already causing disasters like flooding, coastal erosion, and infrastructure damage. To combat this, national and international policy makers need to act now to integrate permafrost thaw into disaster policies and community-led adaptation frameworks. This will create clear planning and response procedures for future permafrost-related issues.

What you can do

Permafrost thaw is an issue that affects everyone. Understanding the local and global implications and sharing that information within immediate social circles as well as on social media platforms can help start conversations that spur action. The public also has the power to influence the development of climate policies by pressuring elected officials to tackle this serious issue.>

 

For more information about the issues surrounding permafrost thaw, read part one and part two in our Permafrost series. To stay informed and get involved, visit the Permafrost Pathways site.

The critical missing expense in global climate budgets

A major emitter is being left out of the global climate budget, and Arctic communities are already feeling the impacts

A 2022 Intergovernmental Panel on Climate Change (IPCC) report confirms that the Earth is on track to warm 1.5 degrees celsius by 2040. Warming beyond this will cause global issues like struggling coral reefs, catastrophic storms, and extreme heat waves. The international community has developed a global carbon budget that tracks how much carbon can be added to the atmosphere by human-caused emissions before we push warming past 1.5 and even 2 degrees. It functions much like a household budget— where spending more than you earn can jeopardize your stability and comfort.

With the carbon budget, that means balancing how much carbon is released into the atmosphere with how much is being stored by natural sinks. According to the IPCC, the world needs to wean itself off of “spending” down that budget as we rapidly approach 2 degrees of warming.

Permafrost is missing from the budget

But IPCC’s budget calculations aren’t factoring in a major source of emissions—permafrost thaw. Massive amounts of carbon are stored in frozen Arctic soils known as permafrost. As permafrost thaws, that carbon is released into the atmosphere in the form of carbon dioxide and methane. Scientists estimate that emissions from permafrost thaw will range from 30 to 150 billion tons this century.

Despite being on par with top-emitting countries like India or the United States, permafrost thaw is not included in the global carbon budget. It has historically been excluded because of gaps in data that make existing estimates of emissions less precise. Dr. Max Holmes, President of Woodwell Climate Research Center, says it’s “especially alarming… that permafrost carbon is largely ignored in current climate change models.” That’s because permafrost thaw emissions could take up 25-40% of our remaining emissions budgeted to cap warming at 2°C. Imagine leaving the cost of rent out of your household budget. It doesn’t mean you don’t have to pay it, it just means you won’t be prepared when that bill arrives.

Excluding permafrost thaw also means that projections of the rate of warming will be off. The unaccounted carbon will speed up warming, reducing the amount of time we have to avoid the worst impacts of climate change.

Permafrost thaw is already negatively impacting Arctic residents, especially Indigenous communities. In 2019, a Yup’ik community  that has lived in Newtok, Alaska for hundreds of years had to begin moving to higher, volcanic ground because the thawing permafrost under their town was causing disastrous floods and sinking infrastructure. Woodwell Arctic program director and senior scientist, Dr. Sue Natali, who studies permafrost thaw in Yup’ik territory, says “it’s a place where permafrost is on the brink of thawing, and will be thawed by the end of the century, if not much sooner.”

Since permafrost spans multiple countries, it has been difficult to determine who should take responsibility for it. Consequently, there is currently little government framework for adaptation. The Yup’ik people had to reach out to a variety of government agencies and lived without plumbing for decades before the federal government finally awarded them support for relocation. The community paid a heavy price for it, though. Without proper policy in place to manage climate relocation, they had to bargain for government assistance, and in the end, turned ownership of the land they were leaving over to the U.S. government.

It took sixteen years from when Congress agreed to assist the Yup’ik community to when their promises were put into action. While scientists, like the ones spearheading Woodwell’s Permafrost Pathways program, are monitoring and modeling thaw to better prepare people for the damage it can cause, vulnerable communities do not have sixteen years to wait for assistance and relocation.

If permafrost thaw continues to be overlooked by government agencies, then it will remain difficult to prevent the Earth from warming beyond 2ºC and to support frontline communities most affected by it. Tackling permafrost thaw for both Arctic communities and the planet will require a coordinated international effort.

Looking for some background on Permafrost? Read the first piece in our permafrost series: “What is Permafrost?” To learn about what must be done to combat this issue, read part three: “What can be done about permafrost thaw?”

What is permafrost?

Centuries-old frozen soil is under threat from rapid warming

Thinking about climate change usually brings to mind dramatically melting ice caps and rising sea levels, but there’s another threat that’s caught the attention of climate scientists for its potential to be equally as disastrous—thawing permafrost.

Located anywhere between a few centimeters to 4,900ft below the Earth’s surface, permafrost is soil composed of sand, gravel, organic matter, and ice that has been frozen for at least two consecutive years. Some has been frozen for centuries or even millenia, and it’s this ancient permafrost in the Arctic that holds the greatest significance for climate change.

Arctic permafrost stretches across Alaska, Scandinavia, Russia, Iceland, and Canada, and can be found beneath the Arctic Ocean, the Arctic tundra, alpine forests, and boreal forests. It covers 15% of the land in the Northern Hemisphere and 3.6 million people live atop it. Scientists estimate that Arctic permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but when it thaws, soil microbes break down the organic matter in permafrost and release carbon dioxide and methane into the atmosphere, increasing the rate of climate change.

In many places, forests, plants, and peat act as protective insulation for Arctic permafrost. This insulation helps keep carbon-storing organic matter, like plants and animals, as well as bacteria and archaea, frozen in the permafrost. However, climate change is already causing the Arctic to warm three to four times faster than the rest of the planet.

In addition to rapid warming speeding decay, it also strips back permafrost’s protective layers with increasing fires and heavy summer rains that burn and erode away top soil layers, further accelerating thaw. In some places, permafrost thaws so abruptly that the ground can collapse. Developing infrastructure that requires deforestation and underground pipes further exposes permafrost to warming. Additionally, as sea ice melts, coastal Arctic permafrost is exposed to warmer waters. The combined result is extensive permafrost thaw across the region.

Researchers have been studying permafrost thaw to determine the size of the threat it poses. Methods such as placing soil moisture sensors in strategic locations and examining soil cores collected by drilling holes into the soil to document the different layers of permafrost help gauge the rate and extent of thaw.

In a recent TEDTalk, Dr. Sue Natali, Woodwell’s Arctic program director and senior scientist, cautioned that, “By the end of this century, greenhouse gas emissions from thawing permafrost may be on par with some of the world’s leading greenhouse-gas-emitting nations.”

There are already visible signs of vast permafrost thaw in the Arctic. Since ice is an essential part of the ground’s structural integrity, the soil becomes unstable when it thaws. This leads to dangerous situations like landslides, sinkholes, and destabilized infrastructure that threaten millions of people. Remote communities are particularly impacted, losing access to roads and sources of freshwater.

For both the carbon it threatens to release, and the destabilizing impacts it has on Arctic residents, permafrost thaw is a serious threat. One that, as the Arctic continues to warm, demands urgent attention and remediation.

Until now, that attention has been slow in coming. Read about why combatting permafrost thaw is such a complex issue in part two of our Permafrost series: “The critical missing expense in global climate budgets.”

What’s New?

A recent paper offers new insight into the state of global forests. Using remote sensing imagery from MODIS satellites, researchers were able to categorize forest condition in two important biomes—the Amazon and the Siberian Taiga—differentiating between high stability, low stability, and non-forested areas. These “stability classes” provide another metric of assessing the conservation and carbon value of land, as high stability forests tend to be healthier, more resilient, primary forest stands that store large amounts of carbon and contribute to cooling the planet more than lower stability forests.

“Mature forests have higher biodiversity and create their own microclimate,” says paper co-author and Woodwell Associate Scientist, Brendan Rogers. “They’re more resistant to drought and other types of disturbance. And then because of that, they tend to be more stable in the face of environmental perturbations over time.”

Understanding forest stability

To estimate forest stability, researchers analyzed satellite data that combined measures of photosynthetic radiation with a canopy water stress index. That new approach was able to identify whether or not a forest has been disturbed by either human land use (ex. logging) or natural processes (wildfire, insects outbreaks, etc.) and map the degradation level.

Co-author Dr. Brendan Mackey from Griffith University in Australia says that stability mapping is a first critical step in making an inventory of the world’s remaining primary forests which store more carbon, support the most biodiversity, and deliver the cleanest water. 

According to Dr. Rogers, the less interruption in the ecological processes of the forest, the more secure the carbon stored in both the trees and soils are. Further human interference in an unstable forest could tip it into decline. 

“I think one of the problems for primary forest conservation globally has been this idea that it’s either a forest or not a forest. So, internationally agreed upon definitions of what constitutes a forest sets a pretty low bar. You can get away with calling a plantation with very young trees a forest, but that could have been converted from a high biomass mature forest, and they’re simply not the same—not in terms of carbon, biodiversity, or ecosystem services,” says Dr. Rogers.

What this means for forest conservation

Using a gradient of forest stability instead of a black and white definition of forest/not-forest allows for more nuanced decision-making where both carbon monitoring and conservation planning are concerned.

“The first priority is to protect stable forests from further human disturbance, as once an area is deforested, it takes decades to centuries—and in some cases millenia—for it to regrow to a primary state. The second priority is to identify forest areas where restoration efforts will be most cost effective,” says Dr. Mackey.

According to the paper’s lead author, Dr. Tatiana Shestakova, this means places where a small investment could have bigger positive results.

“If you pick a forest that was degraded in some way, but it still keeps patches of more or less healthy forests, you can reinstate ecological processes faster and easier,” says Dr. Shestakova.

Dr. Shestakova said she encourages other researchers to apply the methods to their particular regions of expertise and expand estimates of forest stability globally.

“The benefit of this approach is that it was tested in such contrasting ecoregions, and has been proven to be a simple and efficient way to assess this important dimension of forest condition,” says Dr. Shestakova.

oncoming storm front
A sudden flip in weather conditions—from a long hot and dry period to a parade of storms, for example, or from abnormally mild winter temperatures to extreme cold—can cause major disruptions to human activities, energy supplies, agriculture, and ecosystems. These shifts, dubbed “weather whiplash” events, are challenging to measure and define because of a lack of consistent definition. A new study demonstrates an approach to measuring the frequency of these events based on rapid changes in continent-wide weather regimes.

The study indicates that, while the frequency of whiplash events in recent decades has not changed substantially, future model projections indicate increases will occur as the globe continues to warm under a thicker blanket of greenhouse gasses. In particular, the researchers find whiplash will increase most during times when the Arctic is abnormally warm, and decrease when the Arctic is in a cold regime—something that will occur less often as the planet warms.

Examples of weather whiplash during 2022 so far include a long, hot, drought in western U.S. states during early summer that was broken by record-breaking flash flooding; exceptionally wet and cool conditions during June in the Pacific Northwest replaced by a heat wave in July; a record-warm early winter for most south-central states followed by a cooler-than-average January and February; and a spell of 67 consecutive hot, dry days in Dallas, TX, broken by the heaviest rains in a century.

“The spring and summer of 2022 have been plagued by weather whiplash events,” said lead author, Dr. Jennifer Francis, Senior Scientist at the Woodwell Climate Research Center. “A warming planet increases the likelihood of longer, more intense droughts and heat waves, and we’re also seeing these spells broken suddenly by heavy bouts of precipitation, which are also fueled by the climate crisis. These sudden shifts are highly disruptive to all sorts of human activities and wildlife, and our study indicates they’ll occur more frequently as we continue to burn fossil fuels and clear-cut forests, causing greenhouse gas concentrations to rise further.”

Co-author Judah Cohen, Principal Scientist at Verisk AER noted that these phenomena are tightly linked to regional warming in the Arctic.

“We know the Arctic region is experiencing the most rapid changes in the global climate system. Evidence is growing that these profound changes are contributing to more extreme weather events outside the Arctic, and this influence will only increase in the future,” said Dr. Cohen.

What’s New?

The Cerrado is a tropical savanna located just southeast of the Amazon rainforest. This biome is a patchwork of forests, savannas, and grasslands, nearly as biodiversity rich as the Amazon yet suffering more due to lax environmental protections. Over 46% of its original land cover has already been cleared for crops or pastures. A recent study assessed the impacts of this conversion on the temperature and water cycling in the region.

The study found that clearing of natural ecosystems resulted in increased land surface temperatures and reduced evapotranspiration — water evaporated to the atmosphere both from soils and as a byproduct of plant growth. Across the biome, land use changes caused a 10% reduction in water being cycled into the atmosphere annually, and almost 1 degree C of warming. Where native savanna vegetation was cleared, temperatures increased by 1.9C and the water recycled to the atmosphere decreased by up to 27%. These changes don’t take into account the additional effects of atmospheric warming from greenhouse gas emissions. 

The study also projects forward three potential future scenarios based on different levels of environmental protection. The worst-case scenario assumes an additional 64 million hectares of both legal and illegal deforestation, which would leave just 20% of native vegetation in the Cerrado by 2050. If illegal deforestation is prevented but legal deforestation still advances, an additional 28 million hectares of deforestation would continue to warm and dry out the region. Only in the most optimistic scenario, with enforced zero deforestation policies and restoration of over 5 million hectares of illegally cleared vegetation, would the impacts of past clearing begin to reverse.

“If we continue down this path of weakening environmental policies, we’re probably heading towards an uncontrolled increase in deforestation,” says Ariane Rodrigues, researcher at the University of Brasilia and lead author on the paper. “As a result, we could reach almost 1 C of temperature increase by 2050 from land use change alone. If we add the estimated temperature increase from global greenhouse gas emissions, we will have a critical situation for food production, biodiversity, water and wildfire risk, affecting areas located way beyond the biome’s limits.” 

Understanding Land Use in the Cerrado

Incentives for large-scale commercial agriculture in the Cerrado date back to the 1970s. Despite its high biodiversity, only 11% of the Cerrado is protected and technological advancements provided favorable conditions for agriculture to expand rapidly. 

The half of the biome that remains unconverted is considered prime agricultural land. The Cerrado alone is responsible for 12% of global soybean production and 10% of global beef exports. Growing demand for these agricultural products is pushing farmers and ranchers to expand into the Matopiba region in the Northeast Cerrado — one of the largest remaining areas of undisturbed native vegetation. 

Hotspots of reduced evapotranspiration and increased temperatures can already be seen in areas of Matopiba with intensifying agricultural activity. This means that farms will rely even more heavily on irrigation to combat drought, a strategy made less viable by the warming and drying caused by agriculture itself.

“That is the driest portion of the Cerrado, where there’s the most climate risk already,” says paper co-author and Woodwell Water program director, Dr. Marcia Macedo. “You can see that in the data — it’s getting hotter, and there’s less evapotranspiration, so we are really intensifying conflicts in areas that are already on the edge.” 

What this Means for Protecting the Cerrado

The results of the paper highlight the urgent need for a paradigm shift that values the additional services the Cerrado provides beyond just crop production. Not only does it house unique ecosystems, but it plays a pivotal role in modulating the climate of the region. In the best-case scenario evaluated by the paper, zero-deforestation and restoration policies could avoid extensive warming and drying and begin compensating for the past transformation of Cerrado landscapes. Continued conversion of natural vegetation will jeopardize both biodiversity and agricultural stability in the Cerrado, as crops struggle to be productive under hotter and drier conditions. 

Already, conflicts over water usage and irrigation are occurring in western Bahía state. As the region warms and dries, competition for a scarce resource will become more common and large-scale agriculture will become much less viable.

“We’re making some risky decisions in terms of land use,” says Dr. Macedo, “We’re losing a lot for short term gains in crop production, often in areas that will struggle to sustain large-scale agriculture as climate changes.”

Woodwell Team Awarded Commendation in Climate Creatives Challenge

A team of Woodwell researchers and Communications staff received a commendation in the inaugural Climate Creatives Challenge (CCC). The CCC is a series of design challenges created to encourage new ways of communicating the impacts of climate change and the benefits of adaptation. The first challenge engaged creators working across different media—from film to photography, sculpture, and graphic design— on the topic of extreme flooding.

The challenge asked: “How can we communicate the impacts of flooding (past, present or future) and the benefits of adaptation and resilience?”

The Woodwell team used the Center’s flood risk analyses to create an animated infographic demonstrating how extreme flooding could disrupt essential daily tasks for residents of Lawrence, MA. It compares two different neighborhoods to highlight that risk exposure can vary significantly within the same city, and that poorer residents often suffer the first and worst impacts.

Finding out-of-the-box ways to communicate the impacts of climate change is important, as solving the climate crisis will require us to engage audiences from diverse backgrounds and spur them to action.

“The beauty of climate communication is finding ways to overcome the challenge of informing people in a way that elicits empathy and inspires action, rather than overwhelming them into passivity,” says challenge participant and Woodwell Arctic communications specialist, Jessica Howard. “The Climate Creatives Challenge seemed like the perfect opportunity to not only take a more imaginative approach to communicating the impact of the climate crisis but to also further reveal how race and financial privilege make a difference in who bears the brunt of it.”

Contest judges awarded the graphic a commendation, stating that it was, “visually engaging” and “a clever depiction of disruption and inequality.” The final piece was featured in the compendium for Challenge One alongside other winners. Winners will also be displayed at Flood Expo in Birmingham, UK, September 14 and 15.