At age 12, Woodwell Assistant Scientist, Dr. Jennifer Watts was accustomed to black dirt—the rich, wet, crumbling, fertile stuff she dug through on her family’s hobby farm in Oregon. But after moving with her parents and siblings to a roughly 224-acre dairy farm in Minnesota, all she saw around her was light brown, dry earth.
“A lot of the farms around us were a mix of dairy farms and really intense cropping rotations of corn and soybean,” Dr. Watts says. “And I started to notice, where there was tillage, how depleted the soil looked.”
In the United States, farmland covers more than 895 million acres (an area larger than the size of India), and it has a proportionately massive footprint on the environment. Intensive agriculture pulls nutrients out of the soil and doesn’t always return them, converting natural grasslands into monocultures and releasing large amounts of stored carbon in the process.
But what Dr. Watts saw throughout a childhood spent tending to her family’s farm, was that changing the way agricultural land is managed can sometimes reverse those impacts. In converting their cropland to pasture, to support an organic, grass-based dairy farm, Dr. Watts and her family stumbled upon the principles of regenerative agriculture. A practice that can produce food in a way that works with the ecosystem, rather than against it, and has implications for climate mitigation as well.
“It became, for me, an unintentional transformative experiment that my family conducted on our farm,” Dr. Watts says. “By the time I graduated high school, our lands were so lush and green. It was a healthy, productive, diverse ecosystem again.”
When Dr. Watts talks about her father’s idea to move to central Minnesota and start a dairy farm, she calls him a “rogue.” Originally from Alaska, he intended to work in fisheries, but had to change course after a cannery accident. Searching for something that would allow him to still spend his days outside, he settled on farming.
From the beginning, the Watts’ farming practices were considered unconventional in their rural Minnesota community. Firstly, they planted wild grasses and legumes like clover and alfalfa. Then, they left it alone. No tilling in the springtime alongside their neighbors; they simply let the plants establish themselves and moved the cattle frequently (with the help of a cow dog named Annie) to avoid overgrazing.
“After the first couple of years, I started noticing we had a lot more biological diversity in our fields, relative to our neighbors. We had a lot more bees buzzing, and butterflies, and we were popular with the deer and ducks,” Dr. Watts says. A few more years, and the soil started becoming dark and earthy-smelling again, like the soil she remembered from Oregon.
What was happening on their “rogue” dairy farm, was a gradual, partial reclamation of a lost grassland ecosystem— one that used to stretch across the midwest United States and was tended by native grazing species like bison or elk. Grazing plays a major role in cycling nutrients back into the soil, building up important elements like carbon and nitrogen. The near extinction of bison and the proliferation of monoculture cropping have broken this cycle—but cows have the potential to fill the gap left by ancient grazers, re-starting that process. Simple adjustments to management techniques, like lengthening time between grazing a pasture, can give the land time to recover.
This also has implications for how we combat climate change—a term Dr. Watts wasn’t familiar with until later in high school, when family trips back to Alaska revealed the glaciers she loved to visit were shrinking.
“Seeing the glaciers was our favorite thing to do with my grandma, but they were beginning to disappear. And one year, suddenly, I noticed these informational panels along the walk exiting the National Park talking about this thing called climate change,” says Dr. Watts.
Dr. Watts was also seeing another pattern emerge on the farms in her midwest community. Water was becoming a little scarcer. Many of the farms around her family’s had begun investing in irrigation—something that was previously unnecessary, and remained so for the Watts’ farm. Their rich, black soil held onto the water for longer.
As she grew up and (with the help of a pre-Google web search over dial-up internet) charted a course for her career as an ecologist, Dr. Watts began to study the science underlying these patterns she was noticing, and connected them to climate change.
Growing plants draw carbon from the atmosphere. When plants die and decay, some of that carbon is released to the air to be drawn back down again by a new season of growth, while some is stored away as organic matter in the soil. Over centuries, this process forms a stable sink of carbon on the land. Regenerative grazing—the way the Watts family did it—stimulates more plant growth to keep this cycle turning, while overgrazing or removing grazers entirely can halt the process, allowing for erosion, less healthy root systems, and the degradation of the carbon sink. In the U.S., rangelands have historically contributed more to the depletion of soil carbon, but Dr. Watts’ research with Woodwell has demonstrated that, with proper management, rangelands and other agricultural lands have the potential to contribute positively to the climate equation again.
For the past two summers, Dr. Watts, alongside the Woodwell Rangelands team and collaborators, has driven across the western U.S. to collect biomass and soil samples and measure carbon flux from working ranches and federal grazing leases in Montana, Colorado, and Utah. These measurements will help calibrate a new satellite remote sensing-informed model that can track how much carbon is being stored on grazing lands. The model will be hosted on the Rangeland Carbon Management Tool(RCMT) platform—a new web application she and researchers at both Woodwell and Colorado State University are developing to give land managers access to carbon and other ecosystem data for their lands.
The idea is that, with a tool like this in hand, ranchers can account for carbon dioxide flowing into and out of the rangeland ecosystem, and track how this changes over time in response to land management adjustments. It will also show changes in correlating ecosystem metrics like plant diversity and productivity, as well as soil moisture—two things that are crucial to maintaining a healthy and economically viable range. With this information, Dr. Watts and colleagues hope to encourage a regional shift in ranch management strategies that protect and rebuild stores of soil carbon, while providing ranchers with essential co-benefits.
Dr. Watts has been working with Jim Howell, owner of sustainable land management company Grasslands LLC, to connect with individual ranchers and discuss how a tool like this could help their operations. Though ranchers can be a tradition-bound group, Dr. Watts says seeing data that confirms their anecdotal experiences of hotter winters, drier summers, longer droughts, and other climate-related changes has opened them up to making changes.
“There are so many times when we just see the ‘aha moment’ in the manager or the land owner’s face, because they’re suddenly able to see these patterns from a very different perspective,” says Dr. Watts. “Most people, we have strong memories, we know that something’s different, but to be able to show that through data and not only memories—it’s so powerful.”
In addition to ecosystem co-benefits, storing carbon on rangelands could have direct economic benefits for ranchers as well. The RCMT will provide baseline data that could be used to verify credits within a voluntary soil carbon market. Rangelands historically haven’t been included in carbon markets because of gaps in monitoring data that the RCMT will help fill. The data could also be useful for local or state governments setting up payments for ecosystem services schemes in their region that would provide money directly to ranchers in exchange for storing carbon on their lands.
Of course, cattle aren’t without their complications, and ranching practices are just one element of a global meat and dairy industry that contributes to 15 percent of global emissions. But Dr. Watts’ roots as a dairy farmer make her enthusiastic about the possibilities this solution holds to both mitigate emissions and keep an important American livelihood resilient as climate conditions change.
“It’s just one aspect in this really complicated global system,” says Dr. Watts. “But if we manage our ecosystems better, building more intact environments where we can, this can sequester more carbon while restoring ecosystem health and productivity. It’s not the solution, but it is a solution that can benefit our planet while supporting rural communities.”
“Talk to Jim. Jim knows everything.”
That’s what everyone told Woodwell Assistant Scientist, Dr. Jennifer Watts, when she started writing up a research plan to study soil carbon on U.S. rangelands. “And indeed, he does,” Dr. Watts says. “He knows everything about the region, about grazing management, species management, anything having to do with land management on these ranches.”
With his felt Stetson, dusty jeans, and perennial tan, ranch manager Jim Howell looks a bit like the kind of cowboy Hollywood might dream up. And in a way he is—despite looking at home on the range, Howell grew up in Southern California. But he spent his summers out in Colorado’s Cimarron mountains, working on his grandfather’s cattle ranch.
Those summers were Howell’s introduction to the idea that the way livestock are managed can change their impact on the land—a thread that would pull him through a college degree in animal production, towards a career “knowing everything” about holistic ranch management. He was first clued into this concept while walking the fence line separating his family’s property from a patch of public land being used to graze sheep.
“I noticed there were lots of very healthy, perennial, bunch grasses on the sheep side, while our side of the fence had degraded to mostly silver sagebrush, Kentucky bluegrass, and dandelions,” says Howell. “And I just didn’t understand why the differences were so stark.”
Howell’s cattle were stocked continuously on the land, low in number but able to graze year round, while the sheep grazing permit required rotation. There might be a great flock of sheep up there one day and nothing but grass for the remainder of the year. That difference, it turned out, dramatically altered the kinds of plants that could flourish on the land.
“I became aware then that the way that we’d been managing our cows in our country up there was leading to its slow, long-term, ecological degradation. And I didn’t know what to do about it,” says Howell.
There have always been animals grazing the American West—before colonizers, even before native peoples. On the Great Plains there were bison; in the mountains and high altitude deserts of Southwestern Colorado, it was bighorn sheep and pronghorn antelope, as well as elk and mule deer. All three are rare sights now, with populations decimated by overhunting and habitat degradation.
Now, if you see any animal grazing on these ranges, it’ll probably be cattle.
Despite displacing native species, cows can still fill a natural niche in the rangeland ecosystem. Antelope, bison, sheep, and cows all belong to a group of animals called ruminants—animals that can digest grass. Many grasslands have co-evolved with ruminant species; their roaming feasts influence plant growth the same way pruning might affect the shape of a tree. Occasional shearing by a hungry cow stimulates new grass growth. It also creates a more competitive environment that supports a diverse array of plant species.
Grazing also plays a part in cycling nutrients and storing carbon in the soil. In a frequently dry climate like this one, digestion breaks down plant matter much faster than it would decay in the environment. Manure fertilizes new plant growth and returns carbon to the soil. Let this process continue unencumbered for a couple hundred thousand years, and you can build up a valuable carbon sink. And as long as the number of cattle isn’t rising, the oft-cited methane emissions from cow burps are minimal and cycled back down into the plants that grow up after grazing.
Since settlers arrived, however, the land has been put through centuries of abuse. Public lands were, for a long time, left open to unregulated grazing. Many rangelands have been over-stocked and grazed too frequently in order to make a profit and meet growing global beef demand. Land has been ecologically degraded, valuable topsoil was lost, and carbon stores declined as a result.
It would be easy to blame cows for this. But really, they’re not behaving much differently than pronghorn or bison would. They eat what’s in front of them. And they eat the tastier plants first. Howell likens it to a salad bar.
“If you go into a salad bar and there’s some lettuce that has been sitting there for three months, and some of it that’s just been replaced that morning, you take the new stuff. So that’s exactly what the cow does,” Howell says. “If she’s not made to move anywhere new, she’s just going to keep coming back and grazing the regrowth of the good stuff as long as it’s there.”
Pretty soon, perennial grass species, important for their deep roots that help prevent erosion and store carbon and water longer, are grazed into nothing. All that’s left are the sagebrush, dandelions, and other less desirable plants that Howell noticed dotting his family ranch.
“So the whole thing is about how the cows are managed, it’s not the cow itself that is a problem,” says Howell.
But if bad management can degrade the land, then good management should be able to restore it. While studying animal science in college, Howell encountered the concepts of “holistic management”, a term that began to decode this relationship between management practices and the health of the land. Controversial at its introduction a half century ago, holistic ranching has been gaining traction, and Howell and his ranch management company, Grasslands LLC, have helped urge its uptake.
The core principle is to make management decisions that restore lands and keep cattle in balance with the rest of the ecosystem—helping them fill the niche of the ancient grazers. This comes with a host of co-benefits, including water retention and higher plant productivity, that actually end up improving economic profitability for ranches in the long run. Simple adjustments, like lengthening the time between grazing a pasture again and wintering cows on native ranges instead of hay, can turn cattle from an ecosystem destroyer to an ecosystem helper.
“The trick is to let the cows do all the hard work,” says Howell.
Dr. Watts and Woodwell Senior Scientist Dr. Jonathan Sanderman, along with Dr. Megan Machmuller of Colorado State University, are interested in quantifying those co-benefits. Especially carbon storage.
“In the western US on our rangelands, just like in our croplands, we can change how we manage in a way that potentially could become a natural climate solution,” says Dr. Watts. “One where we’re bringing in more carbon than we’re emitting and we’re creating ecosystems that not only are beneficial for carbon sequestration, but also have more biodiversity, offer more habitat for wildlife, and more water conservation.”
In order to prove that value however, scientists need a baseline understanding of how much carbon is currently stored across both traditionally-and holistically-managed rangelands. It’s hard to get an estimate for such a large area (roughly 30% of the U.S. is covered with rangelands), so they are using a remote sensing model, which they verify with strategic on-the-ground sampling.
Howell’s work also created the perfect conditions for the research team to study the long term carbon benefits of altered ranching practices, which is a tricky thing to test empirically. Ranchers must constantly adjust their management techniques to stay profitable.
“In a classical research setting, you try to control all the variables but one, but in real life that’s not what happens,” says Howell. “Nothing is controlled. Day to day, you have to adapt to constantly changing conditions.”
But the ranches Howell’s company works with make those day-to-day decisions based on the principles of holistic management, so tracking carbon on those ranches over time offers the opportunity to generate baseline data on how they differ from more traditionally managed ones.
Howell also brought the expertise of a life spent on the range. He can identify just about any plant growing in the pasture, tell you which are native, which are invasive, and which used to be the preferred food of prehistoric ground sloths. His eye is trained to see diversity even in martian-esque deserts and read the history of the land in the structure of the soil. In May of 2022, Howell guided Drs. Sanderman, Watts, and Machmuller and their teams on a sample collection trip through Southwest Colorado and Utah. The researchers took soil cores, plant samples, moisture and temperature readings, and analyzed carbon fluxing in and out of the pasture.
The ultimate goal is to create a rangeland carbon management tool that will make the soil carbon data model accessible directly to ranch managers. Dr. Watts hopes having that data in hand will enable more ranchers to make management decisions with climate in mind. Dr. Sanderman also notes that it could be useful in eventually helping ranchers get paid for sustainable practices.
“Rangelands haven’t been included in voluntary carbon credit markets like cropping systems have,” says Dr. Sanderman. “Monitoring is a big problem because there’s so much land—How do you keep track of all that? That’s what our tool will be able to offer.”
There are limits to what grazing can accomplish, though. The lands out west aren’t suitable for large-scale cropping, being too dry or too mountainous, which makes them perfect for cattle. But when the animals take up space on land that would otherwise be used to produce crops—or worse, penned into feedlots—their benefits are compromised. Howell also notes that some grazing lands are already as saturated with carbon as they can be. And there remains the fact that ranching will get more complicated as the climate changes.
At the Valdez ranch in Delta, Colorado, Dr. Sanderman and research assistant Colleen Smith unfold a collapsible table in a field of cracking mud, dotted with the brittle stick skeletons of dead grass. Nearby, Dr. Machmuller is assisting Howell in extracting a long metal cylinder from the ground. It was plunged into the soil by a hydraulic corer attached to a pickup truck that’s idling in the field. Howell and Dr. Machmuller lay it out horizontally on the table and slide out the soil core—a 50 centimeter long history of the land beneath their feet.
Howell breaks open a section of the core with his fingers, revealing clusters of white crystals. This is a pasture that has been abused; over-irrigation by previous owners brought salts to the surface. Now nothing will grow here and wind gusts threaten to blow away loose topsoil. It’s a sacrifice zone. The current owners are considering installing solar panels instead.
Water is a big issue for ranchers and it’s threatening to get bigger. The region is constantly dipping in and out of severe drought, and in a place that depends heavily on winter snows for its groundwater and rivers, a warmer, drier climate is a threat.
Agriculture will depend more on irrigation as the climate warms and precipitation patterns change. But this empty pasture is proof that it’s not always a viable solution, and will become less so as climate change advances.
It enforces the urgency of the work Howell and team are doing. The faster we can draw carbon out of the atmosphere, the more successful these ranches are likely to be in the long term. The better managed the ranch, the more resilient it will be in the face of tough conditions.
In the end, Dr. Watts says, the outcome rests in the hands of ranch managers—people like Howell.
“Land managers are the ones that ultimately are going to make or break this country.”
In terms of climate mitigation, forests are like green gold—working overtime to cool the planet, while also supporting a wealth of biodiversity. But we have not been saving them as one would a precious asset. Despite pledges to end deforestation, old growth forests are being cut down at alarming rates. And planting new trees is widely prioritized and incentivized over protecting existing forests. Across the board, standing forests are vastly undervalued. This has to change if we are to stand a chance of limiting warming to internationally agreed targets.
According to a recent study from scientists at Woodwell and the University of Virginia, tropical forests alone are holding back approximately 1 degree Celsius of warming. About 75% of that cooling effect is due to carbon sequestration. Forests grow, trees lock away carbon in their trunks and roots and shunt it into the soil. The other 25% comes from the innate properties of forests that work to cool vast regions of the globe.
Through photosynthesis, plants release water vapor into the air in a process called evapotranspiration. The vapor contributes to cooling near the ground, as well as cloud formation higher in the atmosphere that reduces incoming solar radiation. The shape of the tree canopy also contributes. So-called canopy “roughness” disrupts air flow above the forest. The more uneven the canopy, the more turbulent the air, which disperses heat away from the surface. In the tropics, evapotranspiration and canopy roughness are high, which means that surface temperatures remain relatively low, with the heat dispersed throughout the deep atmosphere.
Forests also naturally produce molecules called biogenic volatile organic compounds (BVOC), which can either contribute to cooling by encouraging the formation of clouds, or to warming by creating ozone and methane. In the tropics, the net effect of these chemicals is cooling.
The cumulative result of these properties is that when forests are removed, the land around them begins to heat up even faster, which can increase the frequency of extreme heat and drought events. Without forests, some regions will become a lot less resilient to sudden shocks. And the release of carbon contributes to global warming which further exacerbates hot, dry conditions.
“Forests act like air conditioners,” says Woodwell Assistant Scientist, Dr. Ludmila Rattis, who studies the impacts of deforestation on agriculture in Brazil. “Deforesting in the face of climate change is like getting rid of your air conditioners before an upcoming heatwave.”
Protecting forests, and maintaining the cooling services they provide, is vital to limiting warming. But, with forests covering 30% of the Earth’s land, prioritizing protection is a massive task. And when it comes to carbon storage, not all forests are equally valuable. Older, healthier forests tend to have a more secure hold on their carbon.
“Mature forests have higher biodiversity and create their own microclimate,” says Woodwell Associate Scientist, Brendan Rogers. “They’re more resistant to drought and other types of disturbance. And because of that, they tend to be more stable in the face of environmental perturbations over time.”
New research from Woodwell and Griffith University has developed a method of identifying high-value forests using satellite imagery. Estimating the metric of “forest stability” through satellite data on the light reflected by vegetation and a water stress index of the tree canopy, researchers were able to determine gradients of stability within forest patches in the Amazon and boreal forests.
Using a gradient of forest stability allows for a better prioritization of forest protection strategies based on their carbon value.
“The first priority is to protect stable forests from further human disturbance,” says paper co-author Dr. Brendan Mackey. “The second priority is to identify forest areas where restoration efforts will be most cost effective.”
But if the state of existing forests is any indication, forest protection continues to be deprioritized. Many wildfires are left to burn unless they threaten human settlements. Governments continue to incentivize deforestation for development or agricultural expansion. Indigenous and local communities are not compensated for their work stewarding their territories and keeping forests safe. And the warmer the planet gets, the more susceptible even protected forests become to drought, fire, and disease.
Research has shown that stewarding standing primary forests, and reviving degraded ones, represents the greatest opportunity for near-term carbon storage and removal. A study of global land-based carbon storage potential found that improved management of existing forests alone could store approximately 215 billion metric tons more than they currently do.
Protecting forests is cost effective, too. For example, in the United States, investing in fire fighting in Alaska’s boreal forests would require just $13 per ton of CO2 emissions avoided. That’s easily on par with other mitigation strategies like onshore wind or solar energy generation.
Effective strategies for protecting forests already exist, they’ve just been suffering from a lack of force—and often funding—behind their implementation. For example, forest carbon markets—where landowners and forest stewards are paid to protect standing forests that are otherwise vulnerable to deforestation—have the potential to keep forests safe while offsetting emissions from other sectors. But nascent carbon markets are inefficient, with weak standards for verifying the quality of credits being sold, and lacking the transparency needed to ensure credits are actually reducing overall emissions, rather than greenwashing carbon-intensive business practices.
Credits are also priced incorrectly for their relative climate value—the market currently values reforestation credits more highly, reducing incentive for landowners to conserve standing, old-growth forests when there is a better livelihood to be made in legally deforesting land for other uses. A truly effective carbon markets system would require large investments in science that can verify credit standards.
Forests are like our global carbon savings accounts—when we cut them down, we’re drawing out money and limiting our ability to collect interest and keep growing our funds. Successful mitigation can’t be accomplished without taking the full value of forests into account and strengthening policies to reflect that. If they aren’t, the planet will pay a far greater price for it as temperatures rise.
“We can’t afford to keep cutting forests. We need to reduce emissions now, and protecting forests is one of our best available solutions. Despite the obstacles, it’s worth the investment,” says Dr. Rogers.
Nature-based climate solutions like reforestation, climate-smart agriculture, and wetland restoration harness natural processes to reduce greenhouse gas concentrations in the atmosphere and slow climate change. These approaches have substantial and growing support from bipartisan lawmakers, the private sector, and conservation-minded NGOs, but scientific tools to guide implementation and to accurately monitor outcomes are not adequately developed.To confront that uncertainty and put nature-based climate solutions on a sound scientific footing, several dozen scientists and policy experts gathered in Washington D.C. in June of this year for a workshop sponsored by Indiana University, the U.S. Department of Energy, and the U.S. Carbon Cycle Science Program. The resulting white paper report reviews the current state of knowledge in this field, and describes the necessary research and technology investments to support effective mitigation policy.
According to the report’s lead author, Dr. Kim Novick from the Paul H. O’Neill School of Public and Environmental Affairs at Indiana University, “Nature-based climate solutions can play an important role in slowing the pace of climate change, but only if they are pursued alongside economy-wide decarbonization and guided by the best-available science.”
The white paper authors identify critical gaps in the science needed to support large-scale implementation of nature-based climate solutions and lay out a research agenda to fill these gaps. They also outline a set of principles that should guide future assessments of the effectiveness and viability of nature-based climate solutions. The result is a road map for producing information that will foster successful programs and policies—while avoiding energy wasted on those that do not.
Woodwell Senior Scientist, Dr. Jonathan Sanderman attended the gathering in June and contributed to the development of the paper.
“We’re at a unique moment in U.S. climate policy where the hard work of the research science community can be directly and immediately leveraged to help the U.S. fight climate change and become a world leader in implementing nature-based climate solutions.”
The report calls for a ~$1 billion (USD) coordinated investment in a national nature-based climate solution “Information Network” organized around coordinated ground-based experiments and monitoring that can inform rigorously benchmarked maps, model predictions, and protocol evaluations.
According to Dr. Benjamin Runkle, another report co-author and associate professor in the College of Engineering at the University of Arkansas: “Although the investment necessary to generate this information is not small, it is a fraction of the amount already allocated to implementation of nature-based solutions. Investing in sound science to predict, monitor, and verify the benefits of these strategies is fundamental to ensuring their success.”
In addition to their potential to stave off climate change, nature-based solutions also have a range of other benefits, including improving air and water quality, promoting biodiversity, and providing economic opportunities. Many can also help communities adapt to a changing climate and improve resilience of agricultural and food systems.
“There is broad-scale agreement that many nature-based climate solutions benefit people and the environment through co-benefits,” said Dr. Emily Oldfield, a report co-author and agricultural soil carbon scientist with the Environmental Defense Fund. “We should push to incentivize those practices using a wide range of policy tools, while acknowledging there is no one-size-fits-all approach to ecosystem-based climate solutions.”
With the Arctic warming 3 to 4 times faster than the rest of the world, permafrost thaw has become a significant climate threat. Scientists estimate that permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but with recent and projected thaw, the organic matter in permafrost is breaking down and releasing carbon dioxide and methane into the atmosphere, increasing the rate of climate change.
Addressing this issue requires extensive data collection on permafrost emissions, as well as equitable strategies for adaptation by Arctic communities. To tackle this issue, Woodwell has partnered with the Arctic Initiative at Harvard Kennedy School, the Alaska Institute for Justice, and the Alaska Native Science Commission to connect experts in climate science, human rights, and public policy with frontline communities and high-level decision makers. The partnership is pioneering a six-year research program called Permafrost Pathways that will develop action plans to address the compounding impacts of permafrost thaw.
With the understanding that this needs to be a sustainable process with long-term impact, Permafrost Pathways’ scientists are expanding and coordinating a pan-Arctic carbon monitoring network to improve the accuracy of permafrost thaw emissions estimates. More precise measurements will fill critical data gaps and reduce uncertainties, so that permafrost emissions can be factored into global carbon budgets, climate models, targets, and measures for mitigation and adaptation. That, combined with high-resolution satellite and aircraft-based observations and advanced computer modeling, will allow for tracking the changing landscape in near real-time and more accurately projecting future emissions.
Permafrost Pathways is also collaborating with local communities to co-create Indigenous-led adaptation strategies. For many, relocation or infrastructure upgrades are needed urgently, but there is currently no process or resources to enable communities to move forward. With Arctic residents already feeling the brunt of climate change, the involvement of frontline communities is crucial in developing successful adaptation plans and effective policies.
Despite its big strides, Permafrost Pathways is still in its infancy and there is a long road ahead when it comes to tackling the complexity of permafrost thaw. Today, at least 192 countries, plus the European Union, have signed on to the Paris Agreement’s promise of reducing emissions to keep warming below 2 degrees C. But many emissions reduction goals do not include carbon released by permafrost thaw. The international community needs to take strong action to change this or else permafrost thaw could undermine climate goals.
In the Intergovernmental Panel on Climate Change’s 2021 report, permafrost thaw was named as an issue that should be included in carbon budgets and global reduction schedules, but often isn’t because there is not enough data on its climate impact. Continued support of data gathering programs like Permafrost Pathways will provide the international community, top country-level climate negotiators, and environmental ministers the knowledge needed to fix that oversight and start filling gaps.
In Arctic communities, permafrost thaw is already causing disasters like flooding, coastal erosion, and infrastructure damage. To combat this, national and international policy makers need to act now to integrate permafrost thaw into disaster policies and community-led adaptation frameworks. This will create clear planning and response procedures for future permafrost-related issues.
Permafrost thaw is an issue that affects everyone. Understanding the local and global implications and sharing that information within immediate social circles as well as on social media platforms can help start conversations that spur action. The public also has the power to influence the development of climate policies by pressuring elected officials to tackle this serious issue.>
For more information about the issues surrounding permafrost thaw, read part one and part two in our Permafrost series. To stay informed and get involved, visit the Permafrost Pathways site.
A 2022 Intergovernmental Panel on Climate Change (IPCC) report confirms that the Earth is on track to warm 1.5 degrees celsius by 2040. Warming beyond this will cause global issues like struggling coral reefs, catastrophic storms, and extreme heat waves. The international community has developed a global carbon budget that tracks how much carbon can be added to the atmosphere by human-caused emissions before we push warming past 1.5 and even 2 degrees. It functions much like a household budget— where spending more than you earn can jeopardize your stability and comfort.
With the carbon budget, that means balancing how much carbon is released into the atmosphere with how much is being stored by natural sinks. According to the IPCC, the world needs to wean itself off of “spending” down that budget as we rapidly approach 2 degrees of warming.
But IPCC’s budget calculations aren’t factoring in a major source of emissions—permafrost thaw. Massive amounts of carbon are stored in frozen Arctic soils known as permafrost. As permafrost thaws, that carbon is released into the atmosphere in the form of carbon dioxide and methane. Scientists estimate that emissions from permafrost thaw will range from 30 to 150 billion tons this century.
Despite being on par with top-emitting countries like India or the United States, permafrost thaw is not included in the global carbon budget. It has historically been excluded because of gaps in data that make existing estimates of emissions less precise. Dr. Max Holmes, President of Woodwell Climate Research Center, says it’s “especially alarming… that permafrost carbon is largely ignored in current climate change models.” That’s because permafrost thaw emissions could take up 25-40% of our remaining emissions budgeted to cap warming at 2°C. Imagine leaving the cost of rent out of your household budget. It doesn’t mean you don’t have to pay it, it just means you won’t be prepared when that bill arrives.
Excluding permafrost thaw also means that projections of the rate of warming will be off. The unaccounted carbon will speed up warming, reducing the amount of time we have to avoid the worst impacts of climate change.
Permafrost thaw is already negatively impacting Arctic residents, especially Indigenous communities. In 2019, a Yup’ik community that has lived in Newtok, Alaska for hundreds of years had to begin moving to higher, volcanic ground because the thawing permafrost under their town was causing disastrous floods and sinking infrastructure. Woodwell Arctic program director and senior scientist, Dr. Sue Natali, who studies permafrost thaw in Yup’ik territory, says “it’s a place where permafrost is on the brink of thawing, and will be thawed by the end of the century, if not much sooner.”
Since permafrost spans multiple countries, it has been difficult to determine who should take responsibility for it. Consequently, there is currently little government framework for adaptation. The Yup’ik people had to reach out to a variety of government agencies and lived without plumbing for decades before the federal government finally awarded them support for relocation. The community paid a heavy price for it, though. Without proper policy in place to manage climate relocation, they had to bargain for government assistance, and in the end, turned ownership of the land they were leaving over to the U.S. government.
It took sixteen years from when Congress agreed to assist the Yup’ik community to when their promises were put into action. While scientists, like the ones spearheading Woodwell’s Permafrost Pathways program, are monitoring and modeling thaw to better prepare people for the damage it can cause, vulnerable communities do not have sixteen years to wait for assistance and relocation.
If permafrost thaw continues to be overlooked by government agencies, then it will remain difficult to prevent the Earth from warming beyond 2ºC and to support frontline communities most affected by it. Tackling permafrost thaw for both Arctic communities and the planet will require a coordinated international effort.
Looking for some background on Permafrost? Read the first piece in our permafrost series: “What is Permafrost?” To learn about what must be done to combat this issue, read part three: “What can be done about permafrost thaw?”
Thinking about climate change usually brings to mind dramatically melting ice caps and rising sea levels, but there’s another threat that’s caught the attention of climate scientists for its potential to be equally as disastrous—thawing permafrost.
Located anywhere between a few centimeters to 4,900ft below the Earth’s surface, permafrost is soil composed of sand, gravel, organic matter, and ice that has been frozen for at least two consecutive years. Some has been frozen for centuries or even millenia, and it’s this ancient permafrost in the Arctic that holds the greatest significance for climate change.
Arctic permafrost stretches across Alaska, Scandinavia, Russia, Iceland, and Canada, and can be found beneath the Arctic Ocean, the Arctic tundra, alpine forests, and boreal forests. It covers 15% of the land in the Northern Hemisphere and 3.6 million people live atop it. Scientists estimate that Arctic permafrost contains 1.4 trillion tonnes of carbon, an amount more than double what is currently in the Earth’s atmosphere. That carbon sink is stable as long as it stays frozen, but when it thaws, soil microbes break down the organic matter in permafrost and release carbon dioxide and methane into the atmosphere, increasing the rate of climate change.
In many places, forests, plants, and peat act as protective insulation for Arctic permafrost. This insulation helps keep carbon-storing organic matter, like plants and animals, as well as bacteria and archaea, frozen in the permafrost. However, climate change is already causing the Arctic to warm three to four times faster than the rest of the planet.
In addition to rapid warming speeding decay, it also strips back permafrost’s protective layers with increasing fires and heavy summer rains that burn and erode away top soil layers, further accelerating thaw. In some places, permafrost thaws so abruptly that the ground can collapse. Developing infrastructure that requires deforestation and underground pipes further exposes permafrost to warming. Additionally, as sea ice melts, coastal Arctic permafrost is exposed to warmer waters. The combined result is extensive permafrost thaw across the region.
Researchers have been studying permafrost thaw to determine the size of the threat it poses. Methods such as placing soil moisture sensors in strategic locations and examining soil cores collected by drilling holes into the soil to document the different layers of permafrost help gauge the rate and extent of thaw.
In a recent TEDTalk, Dr. Sue Natali, Woodwell’s Arctic program director and senior scientist, cautioned that, “By the end of this century, greenhouse gas emissions from thawing permafrost may be on par with some of the world’s leading greenhouse-gas-emitting nations.”
There are already visible signs of vast permafrost thaw in the Arctic. Since ice is an essential part of the ground’s structural integrity, the soil becomes unstable when it thaws. This leads to dangerous situations like landslides, sinkholes, and destabilized infrastructure that threaten millions of people. Remote communities are particularly impacted, losing access to roads and sources of freshwater.
For both the carbon it threatens to release, and the destabilizing impacts it has on Arctic residents, permafrost thaw is a serious threat. One that, as the Arctic continues to warm, demands urgent attention and remediation.
Until now, that attention has been slow in coming. Read about why combatting permafrost thaw is such a complex issue in part two of our Permafrost series: “The critical missing expense in global climate budgets.”